Book reviews

fucosidosis, and reference to the mucopolysaccharidoses. This book will be an indispensable reading for the neurologist with a molecular outlook, especially the paediatric neurologist and the chemically oriented neuropathologist.

E. J. THOMPSON


Those of us familiar with the papers of Stälberg and Trontelj on single fibre electromyography will not be surprised to find that this monograph, both in presentation and content, is of the high standard we have come to expect of the Uppsala School. The book brings together in a general review the results of work with single fibre electromyography at Uppsala and Ljubljana over the past 15 years. The early chapters introduce the reader to the basic principles of electromyography and evaluation of the properties of various concentric needle electrodes in a simple and straightforward way that will be comprehensible to those who are not familiar with the discipline. The technique of single fibre EMG, the rationale of jitter and fibre density measurements and multi-electrode studies are explained along with pitfalls of interpretation and artefacts that can arise in the use of these techniques. Approximately one-third of the book is devoted to the technical aspects of these investigations, followed by the results of their application to a variety of neuromuscular disorders. The understanding of this subject is greatly facilitated by illustrative examples and the book is copiously supplied with these. Apart from the illustrations to the text there are 35 pages in an atlas of representative electromyographical tracings in a number of disorders. There is a comprehensive list of references to the subject.

This is a complete manual for the electromyographer wishing to learn and practice single fibre EMG. Even for those who may not have the facilities to undertake such studies the book will be of value in increasing their understanding of the basic pathophysiological processes underlying the electrical activity in diseased nerve and muscle states. I have no hesitation in recommending it wholeheartedly.

J. P. BALLANTYNE


Two essays from the forthcoming The Neurosciences: Fourth Study Program are selected for prior publication. Mountcastle's paper entitled "An organis- ing principle for cerebral function: the unit module and the distributed system" is an important condensation of his well-known studies on cortical function. In ontogenetic development, migration of neurones along the surfaces of radially orientated glial cells causes a columnar organisation of cortical cells, microcolumns, assembled into columns which have strikingly similar morphology and processing functions in all areas, the functional differences depending on specific input and output connections. The details are interesting—for example, that only those columns in which stimulation produced movement of the fingers contained neurones with cutaneous receptor fields. The columnar organisation exhibits partially shifted overlap, local sign being sharpened by surround inhibition. General regulatory systems engage the cortex in all its layers and do not have columnar modules. The latter form distributed systems and one or more columns may be involved separately or synchronously in different distributed systems. As Mountcastle points out, the complex function controlled or executed by the system is not localised in any one of its parts, yet the parts are not equipotential in Lashley's sense. Distributed systems are re-entrant and cycle phasically, allowing continual updating of the perceptual image of self and its world, matching the neural replication of the external continuum with a readout of internally stored information (unlocalised). Thus for Mountcastle, unlike Eccles, conscious awareness does not require external influences incompatible with thermodynamic laws.

Edelman will be less well known to British readers as his neurobiological theories arise from immunobiology which leads him to a selectionist—as contrasted with instructionist—theory of neuronal organisation, the detectable signals being limited by genetic constraints modified by early development, independently of the structure of outside signals. There is then a hierarchy of "recognisers" and "recognisers of recognisers" but unlike earlier formulations this is not regarded as an infinite sequence. Groups of cells can have primary and secondary repertoires, altered by selection and commitment during experience, important modifiers being repetition of input, including re-entrant inputs, and association. Versatility is provided by making selection by cell groups "degenerate", a term used to mean that, under given threshold conditions, there must be more than one way of satisfactorily recognising a given input signal, a more flexible safety factor than "redundancy". There is a most interesting discussion of how re-entrant signalling between inputs and recognisers in a phasic model can signal temporal order, an important feature missing from earlier models but essential for speech and other higher functions including, according to Edelman, conscious awareness. It is, of course, a model but the author lists some predictions and consequences, including six conditions which, if they held, would falsify the theory.

In his thoughtful introduction Francis O. Schmitt indicates how well the Edelman model fits with the experimental findings and conclusions of Mountcastle. Unquestionably this book will help to make cerebral function intelligible, a valuable template for interpreting new observations.

J. A. SIMPSON


This volume is divided into seven sections dealing with nerve pathology, axonal transport, the neuropathies of chronic renal failure and diabetes, compression neuropathies, the metabolic, genetic, and inflammatory neuropathies, and ends with a miscellaneous section containing eight papers on a variety of observations on peripheral neuropathy. It is always difficult in a book of this size containing so many individual contributions from many different authors to single out any one author or groups of authors for special comment. How-
The Mindful Brain. Cortical Organization and the Group-Selective Theory of Higher Brain Function

J. A. Simpson

*J Neurol Neurosurg Psychiatry* 1979 42: 1069
doi: 10.1136/jnnp.42.11.1069-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/42/11/1069.2.citation

*These include:*

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/