Letters

Reversed Chaddock method: a new method to elicit the upgoing great toe

Sir: It is widely accepted that the Babinski reflex is the most famous and important pathologic reflex in clinical neurology. Among many other pathologic reflexes that elicit an upgoing great toe, such as Chaddock, Oppenheim, Gordon, Schaefer, or transynkinetics, only the Chaddock reflex is as sensitive as the Babinski. The optimal receptive fields of the Babinski and Chaddock reflexes are the lateral plantar surface, and the external inframalleolar area of the dorsum, respectively. I would like to introduce a new method for eliciting the upgoing great toe by stroking the dorsum of the foot from medial to a lateral direction, and discuss the significance and usefulness of this “reversed Chaddock method.”

Thirteen patients with clinically definite pyramidal tract lesions were randomly selected, and both Babinski and Chaddock reflexes were carried out and compared. The diagnoses of these patients were multiple sclerosis (five cases), spastic paraparesis (two cases), multiple lacunar state, right cerebral infarction, left thalamic hemorrhage, and Shy-Drager syndrome. Amyotrophic lateral sclerosis and spinal cord tumor. Two hemiparetic cases were evaluated in the paretic side only, therefore 24 trials in total were counted. All patients were examined in the supine position by the present author, and the same hammer top was used for stimulation. The elicitation of the Babinski and the Chaddock reflexes was according to the original methods. The elicitation of an upgoing great toe was attempted by stimulating the dorsum of the foot from medial to lateral border as illustrated in figure. The author has proposed the name of the “reversed Chaddock method”.

The positive rate of the Babinski reflex was 19/24 (79%), whereas that of the Chaddock reflex was 24/24 (100%) including one equivocal positive response. On the other hand, the positive rate of this “reversed Chaddock method” was 21/24 (88%), and somewhat superior to the Babinski reflex. The upgoing great toe was immediately obtained in this method, when the stimuli crossed the line into the sural nerve distribution. The posterior and anterior aspects of the lower leg were also stimulated. The upgoing great toe was more easily elicited on stimulating the postero-lateral aspect of the calf supplied by the sural nerve in comparison with the anterior shin supplied by the superficial peroneal nerve.

The Babinski reflex, obtained by stroking the sole, is by far the best and most reliable method of eliciting the upgoing great toe, and many other pathologic reflexes are considered to be just modifications of the Babinski reflex and not superior to it. However, the Chaddock reflex, the external malleolar sign, is also considered to be sensitive and reliable in the literature and in everyday neurological practice. The major problems in eliciting the Babinski reflex by stroking the lateral part of the sole are false positives or negative responses due to withdrawal of the foot, tonic foot responses, or equivocal movements. The irritation to the sole is actually very ticklish in nervous or even in normal individuals, and can provoke unpleasant paraesthesia especially in the patients with peripheral neuropathy. On the other hand, the external infra-malleolar area, which is the receptive field of the Chaddock reflex, is suitable for eliciting the Babinski’s sign without provoking tonic foot responses, or withdrawal upgoing toe movements. By using this “reversed Chaddock method”, the receptive field of the Chaddock reflex may be postulated to be in the sural nerve distribution, which can be supported by the better response on the posterolateral calf stimulation than anterior shin. As far as the receptive fields of the Babinski and Chaddock reflexes are concerned, the first sacral dermatome (S1) is considered to be the reflexogenous zone. But, since the dermatome supplied by the roots shows marked overlapping, such zones are varied in each individual. From the experiences of constant responses in the sural nerve distribution in the Chaddock reflex and the “reversed Chaddock method”, the reflexogenous zone might correspond to the peripheral nerve territories. The same is true of the Babinski reflex, which involves the lateral plantar nerve, but not the medial plantar nerve, though both are supplied by S1 root.

It is concluded that this method, which I have called the “reversed Chaddock method” is not only effective, but also avoids false positives due to withdrawal upgoing toe movements or tonic foot responses which might be provoked by stroking the sole.

KUNIO TASHIRO
Division of Neurology, Department of Neurosurgery, Hokkaido University School of Medicine, Sapporo 060, Japan

Fig Original Chaddock reflex (A) and “reversed Chaddock method” (B).

References


Accepted 8 March 1986

Cognitive effects of high-dose naltrexone in patients with probable Alzheimer’s disease

Sir: Prompted by conflicting reports of efficacy of parenteral naltrexone 1 and by the preclinical literature on the beneficial effects of opiate antagonists on memory, 2 we undertook a study of the effects of the oral narcotic antagonist more appropriate for chronic administration, naltrexone. During the open dose-finding phase of the study, several patients experienced hepatotoxicity.

1321
from naltrexone, and thus further studies were not deemed feasible. In light of the recent report by Hyman et al. in which no beneficial effects of naltrexone were observed, our findings using higher doses and longer treatment periods than Hyman et al. are of importance in interpreting their negative findings.

The 10 patients (4 women, 6 men; age range 67–73 yrs) with probable Alzheimer’s disease (according to NINCDS-ADRSA criteria) had a mean duration of symptoms of three years and scored between 2:5 and 13 on the Blessed Dementia Rating scale. The trial was conducted in an open dose-finding manner (two weeks each of 50, 150 and 300 mg of naltrexone daily). No patients were on any other psychoactive medications in the one month preceding, or during, the trial. Psychometric testing was carried out at the initial visit and then biweekly. Parallel 10 word versions of the Rey auditory verbal learning test (RAVL), Wechsler Memory Scale paired associates, tests of verbal fluency and digit span were given. A 30 minute delayed recall of the RAVLT words was also given.

The total mean number of words produced on the RAVLT increased significantly with the 150 mg and 300 mg doses (overall ANOVA F (3,27) = 3.71, p = 0.02). There was a mean increase in the number of words recalled of approximately 25% from baseline to testing after the 150 mg or 300 mg dose. There were no changes in digit span, paired associates or verbal fluency. Six patients showed no change in their RAVLT performance, but four patients showed substantial changes between baseline and testing after the 150 mg dose, with little additional improvement at 300 mg (table). None of these patients showed improvement on word recall at 30 minutes, however. Three patients developed transient 10–20 fold elevations of aspartate transaminase during the trial, at the 150 or 300 mg dosages, though in one patient the enzyme levels were increasing (though still normal) after the 50 mg dose.

Because improvements did not occur in verbal fluency or digit span, we believe that the increase in total words recalled on the RAVLT by some of the patients may be indicative of a beneficial effect of chronic naltrexone administration (with doses of 150 mg or higher for at least four weeks) on some aspects of episodic memory in patients with probable Alzheimer’s disease. The finding that this was an open trial limits the interpretation of this finding, but does point to the need for development and testing of other oral narcotic antagonists. The failure of Hyman et al. to find improved performance in patients while on naltrexone may reflect the use of a double-blind crossover format which would be more likely to avoid spurious effects. On the other hand, our findings suggest that higher doses and longer administration periods may be necessary for cognitive effects to occur. In addition, naltrexone may act by inducing opiate receptor proliferation, so that there may be a carry-over effect of naltrexone that would falsely elevate performance on the placebo portion of a crossover study. Thus, the negative finding of Hyman et al. must not be taken as definitive. Manipulation of the opioid system may yet prove fruitful in the treatment of Alzheimer’s disease since it may regulate both cholinergic and noradrenergic function, both of which may be abnormal in the disease.

We thank El Dupont de Nemours and Company for the naltrexone tablets. This study was supported by NIH grant RR400 to the University of Minnesota General Clinical Research Center.

DAVID S KNOPPMAN

Marilyn Hartman

Department of Neurology,

Box 295 University of Minnesota Hospitals,

Minneapolis, Minn 55455,

USA.

References


Accepted 3 February 1986

Reversible muscle spasms in hyperthyroidism

Sir: A patient with hyperthyroidism presented with severe generalised muscle spasms. The rapid disappearance on antithyroid treatment and the relapse on thyroxine replacement therapy suggested a causal relationship.

A 39-year-old woman suffered from bouts of stiffness when walking, which increased in frequency and severity during the 2 week period prior to examination. When going downstairs, she had a feeling of being pulled backwards, because the muscles of her neck, trunk and extremities became stiff. Furthermore, she felt “overwrought, restless and distressed”, was emotionally unstable and perspired heavily. These symptoms gradually increased and every attempt to sit down, get up or walk, and every emotion gave rise to the same “muscle spasms”, as she called them, whereby her head was pulled backwards, and her trunk, arms and legs were stretched. This caused her to fall backwards several times. Her sleep was not disturbed by spasms.

Table: Total words recalled on RAVLT, by patient

<table>
<thead>
<tr>
<th>Patient</th>
<th>Week</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>12</td>
<td>28</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>13</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>17</td>
<td>21</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>17</td>
<td>21</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>12</td>
<td>23</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>13</td>
<td>12 *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Patient 10 did not receive the 300 mg dose because of recognition of hepatotoxicity in other patients.
Cognitive effects of high-dose naltrexone in patients with probable Alzheimer’s disease.
D S Knopman and M Hartman

J Neurol Neurosurg Psychiatry 1986 49: 1321-1322
doi: 10.1136/jnnp.49.11.1321-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/49/11/1321.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/