for the person with epilepsy, but these findings also show that poor adjustment is not inevitable.

J E CHAPLIN
Rehabilitation Resource Centre, Department of Systems Science, City University, Northampton Square, London EC1V 0HB, UK
SD SHORVON
INSEG (Institute of Neurology and National Society for Epilepsy Research Group), Institute of Neurology, London and Chalfont Centre for Epilepsy
M FLOYD
Rehabilitation Resource Centre
R YEPEZ LAonso
INSEG, Institute of Neurology

Correspondence to: Dr Chaplin


Spinal somatosensory potential monitoring in three cases of neurological deterioration after laminectomy for cervical spondylotic myelopathy

Posterior cervical laminectomy is a widely accepted treatment for multisegmental cervical spondylotic myelopathy, particularly when the condition is associated with a narrow spinal canal.1 After laminectomy, some patients complain of increased weakness and paraesthesiae of the arms. This clinical finding is consistent with segmental damage either at the spinal cord or nerve root level. We report three patients of transient neurological deterioration in whom spinal somatosensory potential monitoring during operation gave useful information on the pathophysiology of the postoperative deficit.

Cervical spinal somatosensory potentials were recorded during operation, before and after laminectomy. The potentials were evoked by electrical stimulation of the median nerve at the wrist. Rectangular pulses (0.5 ms duration and amplitude 4/3 of the motor threshold) were delivered at 1 cycle/s. After exposure of the cervical laminae, the recording electrode (Medtronic Sigma 3483 or Quad 3487A) was placed in the epidural space, medially over the posterior columns. The reference electrode consisted of a 14 G needle inserted into the paraspinal muscles immediately caudal to the skin incision. A total of 50-150 stimuli were applied and averaged; analysis time was 50 ms with a horizontal resolution of 98 \(\mu\)s per point. An open bandpass (2-5000 Hz) was set and the negative upward convention was used. The potentials were analysed for latency, amplitude, duration, and waveform. The single components were labelled according to their polarity and to the expected latency.

Anaesthesia was induced with thiopentone sodium (5 mg/kg) and fentanyl (0-002

Cervical epidural somatosensory potentials evoked by median nerve stimulation at the wrist (0.5 ms, 1 c/s, 4/3 of motor threshold) recorded before and after laminectomy for cervical spondylotic myelopathy.
mg/kg). Endotracheal intubation was performed during muscle relaxation with pancuronium (0.05 mg) and propofol. Anaesthesia was maintained with nitrous oxide, oxygen, and isoflurane (0.7–1.2%).

Case 1 was a 51 year old man who, since 1986, had had a progressive spastic paraparesis and complaints of claudication and brachial pain. Neuroradiological investigations showed cervical spondylitis with a narrow canal from C3 to C7. The patient underwent a C3-C7 posterior laminectomy. After operation, he showed a transient (seven days) decrease of motor performance in the distal segments of the arms. Before laminectomy, the potential recorded epidurally at Cv5 after median nerve stimulation was characterised by a normal P10 followed by an N11 wave with a peak latency of 12.3 ms, and an N13 wave at 13.9 ms. Amplitude (P10-N13: 12.8 µV) and waveform were normal. After laminectomy, the disappearance of the N13 wave was noticed. The P10 and N11 waves were unchanged (figure).

Case 2 was a 56 year old man who presented in 1984 with progressive spastic tetraparesis and hypoesthesia below C4. An MRI of the cervical spine showed spondylotic stenosis of the canal from C3 to C5. He underwent a C3-C5 posterior laminectomy. After operation, he showed a transient (seven days) decrease of motor performance in the distal segments of the arms. Before laminectomy, the potential recorded epidurally at Cv5 consisted of an evident delayed P10 (peak latency: 11.2 ms), N11 (peak latency: 13.6 ms), N13 (peak latency: 14.0 ms), followed by a low wave positive (P18 at 25.8 ms). Amplitude (P10-N13: 15 µV) and waveform were normal. After laminectomy a decreased amplitude (P10-N13: 10.7 µV) and a longer duration (11.8 ms v. a prelaminectomy value of 4 ms duration) of the main negative wave (N13) were evident (figure).

Case 3 was a 67 year old man with spastic tetraparesis and hypoesthesia of both hands. Cervical MRI showed a minor mental spondylitis from C4 to C7. The patient underwent a C3-C7 posterior laminectomy. After operation a transient (four weeks) tetraparesis and hypoesthesia of upper extremities was evident.

Before laminectomy, the epidural evoked potentials consisted of a slightly delayed P10 (peak latency 11.3 ms) followed by a negative wave (P18 at 12.8 ms). The amplitude was normal from Th1 to Cv6 (P10-N13: 10 µV), whereas it was decreased above Cv5-6 (P10-N13 at Cv5-6: 5 µV). After laminectomy a decrease in amplitude or disappearance of the main negative wave (N13) was evident (figure).

In these three cases, laminectomy was followed by an alteration in the postsynaptic component (N13) of 14 ms. The median evoked potential, whereas the root component (N11) was unchanged. This is consistent with grey matter damage. The genesis of this latency is probably a vascular insult in an already hypoperfused area. Indeed, in cervical spondylitic myelopathy the osteoplastic process may impinge on the anterior spinal artery and cause hypoperfusion of the haemodynamic autoregulation in the spinal cord watershed areas. The decompression by posterior laminectomy may increase the blood supply, but as a consequence of the previously mentioned loss of haemodynamic autoregulation, it may cause haemorrhasia in these areas and probably the neurologic effect of a further ischaemia. Other mechanisms of damage such as cervical spine instability, a local concussion of the cord, or a temporary oedema caused by mechanical interference, cannot be excluded.

In conclusion, this neurophysiological study shows that neurological deterioration after posterior laminectomy in these patients was due to grey matter damage and not to root root stretching. It is important to stress that the damage reversed spontaneously.

B CIONI
M MEGLIO
L PENTITIMALI
M VISOCCHI
Istituto di Neurochirurgia,
Università Ca' Foscari, Roma, Italy

We thank Anna Capusano for her technical assistance in collecting the data. The work was partially supported by MPI and by the V Smith Foundation for Restorative Neurology, Houston, Texas, USA.

Correspondence to: Dr Beatrice Cioni, Istituto di Neurochirurgia, Università Ca' Foscari, Lg A Gemelli, 8, 00168 Rome, Italy.


Different criteria in the assessment of visuospatial neglect

The classical manifestations of visuospatial neglect are (1) a certain minimal number of omissions in conventional neglect tests, and (2) a defective performance more pronounced at the side opposite the brain lesion. The procedure for assigning patients to the different neglect group typically includes a measure of the number of omissions in tests such as target cancellation, figure copying, and freihand drawing. A measure of the asymmetry of omissions is, however, not always included as a criterion for spatial neglect. Unless this is done, patients showing the typical pattern of visuospatial neglect may be mixed with patients showing no laterality in the defective performance.

The aim of this study was to compare the accuracy of the assignment of patients to the neglect group when using three different criteria for visuospatial neglect. A consecutive series of 60 right handed patients, mean (SD) age 60-25 (12-58); range 21–77 years with a single right hemispheric stroke were assessed one to eight weeks after stroke (mean (SD) 2.5 (1-53 weeks) using seven subtests from a shortened and slightly modified version of the behavioural inattention test. (The behavioural inattention test was introduced by Wilson et al to offer a standardised test battery of unilateral visual neglect.) Thirty four neurological healthy age matched right handed subjects served as controls.

The cut off level for defective numbers of omissions in each subtest and in the total number of subtests was set at the first score below the normative range obtained from the control group. The asymmetry of defective performance was measured in the tests with scores at or below the cut off level. To avoid control subjects with lateralized located omissions, only the lateral parts of the test material were included in this measurement. The number of detected targets at the contralesional side was divided by the total number of detected targets and then represented by a percentage measure. The classification of asymmetry of omissions was based on the range of laterality scores found in the control group (44–56%). It was classified as contralesional asymmetry if a laterality score below 44% was found in at least one of the tests and if no test was found with a score above 56%.

An assessment of hemianopia (by standard confrontational techniques) was included to analyse the influence of hemianopia on the asymmetric performance. The absence of any asymmetrical asymmetry as well as hemianopia were exclusively found in patients with neurological deficits remaining three weeks after stroke (in patients showing a major stroke, n = 11). No association between the presence of hemianopia (n = 15) and contralesional asymmetry (n = 18) was found in this group (χ² = 2.49, p = 0.115).

The present study compared three different criteria for assigning patients to the visuospatial neglect group, which are similar to criteria applied in recent studies of visual neglect: (1) a score at or below the individual cut off score in any of the seven subtests; (2) a total score at or below the aggregate cut off score for the seven subtests in the battery; (3) a score at or below the cut off level in at least one of the subtests and a contralesional asymmetry in the defective performance (as defined earlier).

A significant difference was obtained between the proportions of patients defined as having visuospatial neglect when using the three criteria for neglect (Q = 19, df = 2, p < 0.001, Cochran Q test). The proportions were 45% (27/60), 23% (14/60), and 30% (18/60) respectively.

The criterion of individual cut off scores was the most generous method for classifying patients as having neglect. The use of this criterion resulted in nine patients (Nos 12, 15, 19–21, and 24–27) who were misclassified as having visuospatial neglect, although no contralesional asymmetry was found in the defective tests (table). These results show that visual inattention in a conventional test battery of neglect might be present with no contralesional asymmetry in the inattentive behaviour. The findings emphasise the importance of including not only visual inattention as a criterion for the visual neglect, but also the asymmetry of the inattentive behaviour.

The aggregate cut off criteria was the most restrictive method for classifying patients as having neglect. The table shows that five patients (Nos 16–18,22, and 23) were classified as non–neglect patients, although the traditional neglect pattern with a defective number of omissions and a
Spinal somatosensory potential monitoring in three cases of neurological deterioration after laminectomy for cervical spondylotic myelopathy.

B Cioni, M Meglio, L Pentimalli and M Visocchi

*J Neurol Neurosurg Psychiatry* 1995 58: 113-114
doi: 10.1136/jnnp.58.1.113

Updated information and services can be found at:
http://jnnp.bmj.com/content/58/1/113.citation

*Email alerting service*

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

*Notes*

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/