
The ability of synapses to change their properties, either by gain or loss of entire synapses or by alteration of efficiency of sig-
nal transduction within individual synapses, is an essential feature of complex nervous systems that alter their response over time. While learning and memory represent perhaps the most obvious application of this "plasticity", the changes seen during develop-
ment and in association with degenerative disease are also very striking. The clinical significance of synaptic plasticity is obvious; degeneration of all areas of memory represents a massive workload for neurologists and an extremely expensive drain on health care resources. A book examining the molecular and cellular biology of the mechanisms of plasticity is therefore a welcome and poten-
tially valuable addition if it is able to bring together the advances in the many different areas under study within this field so as to provide a coherent framework that both pro-
vides insight into basic mechanisms and also goes on to suggest therapeutic approaches.

This book represents a series of reviews written by individual laboratories. The emphasis is firmly on the molecular mecha-
nisms responsible for alteration in synaptic efficiency, with the bulk of the book con-
cerned with the important phenomena of long term potentiation (LTP) and long term depression (LTD). In these phenomena, synaptic transmission is potentiated or depressed by prior experience to tetrican stimuli. Such changes in synaptic efficiency could obviously provide a mechanism of alteration in memory or learning based on previous experience and so provide a synaptic pathway capable of "learning". The elucidation of the channels involved and the central role of calcium and NMDA receptors has been a tremendous advance over the past few years and the work has provided new approaches of memory disorders. This work is well described and clearly referenced, with additional chapters on the functional impli-
cations for those who wish to pursue the subject in further depth.

Outside the areas of LTP and LTD, there are two chapters in this book examining other areas of plasticity that I enjoyed partic-
ularly. Firstly, Dr Rose provides a lucid account of learning in a valuable model sys-
tem, the newborn chick. While many will be concerned that the complexity of this system will make it difficult to dissect the molecular mechanisms of learning, there is no doubt that the chick provides an excellent example of learning in a higher vertebrate and one that should be of great value to those explor-
ing therapeutic approaches to learning disor-
ders. Secondly, a chapter by Dr Steward covers another aspect of plasticity; the evi-
dence for local synthesis of synaptic protein. Given that any neuron has many dendrites, all of which have synapses from different inputs and all of which can potentially be altered by experience, it follows that the cell has the difficulty of regulating many different synapses individually. There is growing evidence that, at least in part, this is per-
formed by local synthesis of synaptic protein within the dendrites. This is quite different from the more general phenomenon of protein synthesis around the nucleus and subse-
quent translocation to the site of insertion. A method using local synthesis allows greater flexibility as each area could be individually controlled. The evidence for this has emerged largely from Dr Steward's labora-
tory in Charlottesville, Virginia and is described very clearly in his chapter. It is an important work that may provide some of the answers as to how individual neurons can be so flexible in their response.

There are, however, a number of other areas of synaptic plasticity that are covered in rather less detail. Development is associ-
ated with considerable synaptic change, as shown very clearly by the in vitro studies of single mouse neuromuscular junctions, over many weeks, in living animals by Ligmann and colleagues at Washington University, St Louis. The mechanism by which this change occurs is very important, and I was disappoint-
ted to see so little attention paid to development in this book. There is only one short chapter, which concentrates on the role of the extracellular matrix and the mechanisms of stabilisation. I would have enjoyed a more detailed review of the evidence for plasticity as a key developmental process. Another area of research that has added to our understanding of learning and memory is studies in the sea slug, Aplysia, by Kandel and colleagues at Columbia University, New York showing a fascinating range of electrical and structural changes associated with learning. This work illus-
trates very clearly the value of studying sim-
ple model systems, and a review would have been a valuable contribution to this book.

Overall, then, I enjoyed the book and found the chapters well written and informa-
tive. I was, however, disappointed by the omissions. I do not think this book is appro-
priate for general readership in light of its rather focused approach. It will provide a valuable source of reference for students of learning and memory and would be a valu-
able addition to specific libraries, but it is not a book to buy for your bookshelf at home.

CHARLES F FRENCH-CONSTANT

The appearance of this now classic text in the 1970s helped establish neuropsychology as a field of neuroscience. Since then, the subject has grown rapidly. The development of behavioural neurology and neuropsychia-
try creates a need for neurologists and psychi-
atrists to become acquainted with neuropsychology. The main branch of neuropsychology nowadays is theoretical. Theoretical models are constructed which aim to explain nor-
mal mental processes, while elucidation of the neuroanatomical structures involved is given somewhat less prominence. Walsh, however, adopts a "psychoaatomical" approach, that is, the study of brain dam-
age patients primarily to understand the neuro-anatomical localisation of psychologi-
cal function; this is felt to be more useful in helping the clinician understand individual cases. The concept of the "distributed anatomical system" is described, in which each psychological function utilises several interconnected anatomical sites. Similarly, individual cortical areas are involved in se-
veral psychological functions. Although this muddies the waters of localisation of func-
tion, it is a more realistic representation of cognitive function.

In line with this anatomical stance, each lobe has a separate chapter. This leads to distributed cognitive functions, such as memory, being described in several chapters. An alternative division on the basis of cognitive functions, for example memory, language, would make cognition less intimi-
dating to the beginner. As the psy-
choanatomical approach has been largely superseded by cognitive neuropsychology, the references are somewhat dated.

The book will prove useful to psycholo-
gists as an introduction to the field, although they may be more comfortable with the cognitive approach. By contrast, clinical neurologists, given their neuro-
anatomical training, may find the cognitive method initially somewhat alien to the med-
ical mind, and may find the brain-behaviour approach a more useful introductory approach to neuropsychology.

JOHN GREBNE

SHORT NOTICES

Synaptic Plasticity—Molecular, Cellular, and Functional Aspects

Charles Ffrench-Constant

J Neurol Neurosurg Psychiatry 1995 58: 270
doi: 10.1136/jnnp.58.2.270

Updated information and services can be found at:
http://jnnp.bmj.com/content/58/2/270.1.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/