Sex prevalence of focal dystonias

Valerie L Soland, Kailash P Bhatia, C David Marsden

Abstract

The sex prevalence of idiopathic focal dystonia is reported from a data base review of all patients seen at the National Hospital of Neurology, Queen Square and King’s College, London up to 1993. There was a higher prevalence of females to males in all categories of focal dystonia involving the cranio-cervical region. The female to male ratio for cranial dystonia was 1-92:1 (P < 0-01) and 1-6:1 (P < 0-001) for spasmodic torticollis. On the other hand, twice as many men than women had writer’s cramp (M:F = 2:0:1, P < 0-01). At present, there is no clear explanation to account for this differences in the sex prevalence of different types of focal dystonia.

(J Neurol Neurosurg Psychiatry 1996;60:204–205)

Keywords: focal dystonia; sex prevalence; spasmodic torticollis

There is some uncertainty about the female to male prevalence of patients with focal dystonia. A recent survey published in The National Spasmodic Torticollis Association Newsletter (USA)1 concerning the sex of persons with spasmodic torticollis showed that of 1812 respondents, 74% were female and 26% were male, giving a female to male ratio of 2-85:1. The female prevalence in this survey was well in excess of that described in the medical literature (table 1).2,3 We therefore undertook a study to look at our population of patients with isolated spasmodic torticollis as well as those with other forms of focal dystonia to determine the female to male ratios.

Patients and methods

We reviewed the data base of our patients with a diagnosis of idiopathic focal dystonia up to 1993. Patients with generalised or multifocal dystonia were eliminated, as well as those with neurological illness that might have caused their dystonia or those with exposure to drugs known to cause tardive dystonia. We divided the patients into different categories according to the type of focal dystonia: isolated spasmodic torticollis, isolated blepharospasm, isolated oromandibular dystonia, cranial dystonia, or Meige’s syndrome (blepharospasm with oromandibular dystonia), isolated spasmodic dysphonia, and isolated writer’s cramp. In each category, the number of females and males were counted and the female to male ratio was calculated (table 2); the χ² test was used to test statistical significance.

Results

Table 2 shows the results of our study—namely, the total number of patients, the number of females and males, and the female to male ratio for each category of focal dystonia. The female to male ratio varied from 1-6:1 to 3:3:1 for categories of dystonia involving the cranio-cervical region. For writer’s cramp the female to male ratio was 1:2. For spasmodic torticollis, cranial dystonia, and writer’s cramp this difference was statistically significant.

Discussion

In our study females were more prevalent than males in all categories of focal dystonia involving the cranio-cervical region. The female to male ratio for cranial dystonia was 1-92:1 and for spasmodic torticollis it was 1-60:1, lower than the figure of 2-85:1 obtained by The National Spasmodic Torticollis Association,1
The much greater number of females in their survey is possibly due to a selection bias, with more females than males responding. We have also found that nearly two thirds of patients attending our outpatient botulinum toxin clinic to receive injections for spasmodic torticollis are female. This figure is higher than the increase in female to male ratio seen when we looked at the total population of our patients with spasmodic torticollis. Clearly referral bias can be a confounding factor in such studies and the female to male ratio seems to depend on the specific population studied.

There have been many large studies of focal dystonia (tables 1, 3 and 4) showing a preponderance of females to males for forms of focal dystonia involving the craniofacial region. However, many of these studies have included cases with craniofacial dystonia as part of multifocal or generalised dystonia, and some even included cases of tardive dystonia. Some studies were designed to evaluate the efficacy of botulinum toxin, with the inherent problem of selection bias in such series. Nevertheless, there seems to be a slight but clear preponderance of females with various types of focal dystonia involving the craniofacial region.

Why does craniofacial dystonia affect women more than men? Duane has raised the possibility that women are more at risk for these forms of dystonia because of specific oestrogen receptors within the CNS which could influence involuntary motor function. Oestrogens can affect the nigrostriatal dopaminergic system.1 Thyroid disease and other autoimmune conditions, which are more common in women than men, have also been implicated in the pathophysiology of cervical dystonia by some authors4 but refuted by others.5,7

On the other hand, if the same gene is responsible for focal and generalised idiopathic torticollis dystonia,15 it is possible that females are less susceptible to the more extensive forms of the disease and may exhibit a minor expression of the gene. In two studies of patients with idiopathic generalised dystonia reported by Fletcher et al10 and Bressman et al20 there was no clear evidence that generalised dystonia was less prevalent among females. Among the 107 index cases with generalised dystonia studied by Fletcher et al10 45 were male and 62 female, whereas in the 43 patients reviewed by Bressman et al20 23 were male and 20 were female. In their families, those with focal dystonias also showed no clear sex predominance.21

Interestingly, in some other forms of focal dystonia—for example, writer's cramp—males are preponderant as seen in our study (table 2) and in the medical literature.22 Among 91 patients with writer's cramp, Sheehy et al22 found 36 females and 55 males giving a female to male ratio of 1.1:5. Typist's cramp, on the other hand, occurs mainly in women22 and golfer's cramp mainly in men.23

Our study confirms a clear but mild preponderance of females with various types of craniofacial dystonia and of males with writer's cramp. Why this is so remains to be discovered.

Table 1 Large studies of patients with blepharospasm in the literature

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of dystonia</th>
<th>No of patients</th>
<th>F/M</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen et al 1986†</td>
<td>Blepharospasm</td>
<td>75 (54)</td>
<td>47/28</td>
<td>1.77:1</td>
</tr>
<tr>
<td>Carruthers and Stubs 1987‡</td>
<td>Blepharospasm</td>
<td>47 (22)</td>
<td>27/20</td>
<td>1.35:1</td>
</tr>
<tr>
<td>Grandas et al 1988</td>
<td>Blepharospasm</td>
<td>264 (200)</td>
<td>170/94</td>
<td>1.8:1</td>
</tr>
</tbody>
</table>

*Total number of patients shown with, in parentheses, the number with pure blepharospasm known.
†Botulinum toxin study.
‡Included cases of segmental, multifocal, or generalised dystonia.
¶Included cases of tardive dystonia.

Table 2 Large studies of patients with spasmodic dystonia in the medical literature

<table>
<thead>
<tr>
<th>Study</th>
<th>Type of dystonia</th>
<th>No of patients</th>
<th>F/M</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jankovic and Ford 1983</td>
<td>Spasmodic dystonia</td>
<td>21 (6)</td>
<td>20/7</td>
<td>2.85:1</td>
</tr>
<tr>
<td>Ludlow et al 1988‡</td>
<td>Spasmodic dystonia</td>
<td>16 (16)</td>
<td>15/1</td>
<td>15:1</td>
</tr>
<tr>
<td>Rosenfeld et al 1988</td>
<td>Spasmodic dystonia</td>
<td>41</td>
<td>32/9</td>
<td>3.5:1</td>
</tr>
<tr>
<td>Blitzer et al 1988</td>
<td>Spasmodic dystonia</td>
<td>73 (26)</td>
<td>42/31</td>
<td>1.35:1</td>
</tr>
</tbody>
</table>

*Total number of patients with, in parentheses, the number with pure spasmodic dystonia known.
‡Botulinum toxin study.
¶Included cases of segmental, multifocal, or generalised dystonia.
Sex prevalence of focal dystonias.

V L Soland, K P Bhatia and C D Marsden

J Neural Neurosurg Psychiatry 1996 60: 204-205
doi: 10.1136/jnnp.60.2.204

Updated information and services can be found at:
http://jnnp.bmj.com/content/60/2/204

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/