SHORT REPORT

Ondansetron, a 5-HT3 antagonist, improves cerebellar tremor

G P A Rice, J Lesaux, P Vandervoort, L Macewan, G C Ebers

Abstract

It has been previously shown that ondansetron, a 5-HT3 antagonist, can ameliorate vertigo in patients with acute brainstem disorders. A coincidental benefit was the improvement of cerebellar tremor in some patients with both vertigo and tremor. To further evaluate this effect, a placebo controlled, double blind, crossover study was conducted of a single dose of intravenous ondansetron in 20 patients with cerebellar tremor caused by multiple sclerosis, cerebellar degeneration, or drug toxicity. The principal outcome measures were the change in blind assessment of a writing task (spiral copying) and the timed completion of a nine hole peg test. Thirteen of 19 patients were deemed to have improved spiral copying after treatment with ondansetron when compared with baseline performance. One patient had a better response to the placebo compared with baseline performance (P = 0.00024). Patients completed the nine hole peg test in less time after ondansetron than after placebo (P = 0.08). Twelve patients thought that their tremor was functionally improved with the ondansetron treatment. None thought that the placebo gave improvement (P = 0.0098).

The efficacy of orally administered ondansetron in tremor control is currently under study.

(J Neurol Neurosurg Psychiatry 1997;62:282–284)

Keywords: cerebellar tremor; ondansetron; 5-hydroxytryptophan-3 antagonists

In a previous open label study we showed that ondansetron, a 5-hydroxytryptophan-3 (5-HT3) antagonist, was effective in controlling vertigo in patients with acute brainstem disor-

Patient profiles

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Disease</th>
<th>Tremor type and clinical findings</th>
<th>Prior treatment</th>
<th>Spiral copying</th>
<th>Subjective response</th>
<th>Time to complete nine hole peg test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Placebo</td>
<td>Drug</td>
<td>Ondansetron Placebo</td>
<td>Placebo Ondansetron</td>
</tr>
<tr>
<td>1</td>
<td>Cerebellar degeneration</td>
<td>Intention, postural</td>
<td>Clonazepam 0</td>
<td>+ + +</td>
<td>+ + 0</td>
<td>101 85</td>
</tr>
<tr>
<td>2</td>
<td>Cerebellar degeneration</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>0</td>
<td>62 45</td>
</tr>
<tr>
<td>3</td>
<td>Cerebellar degeneration†</td>
<td>Intention</td>
<td>Clonazepam NT NT + (dysarthria) NT</td>
<td>NT</td>
<td>NT</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lithium intoxication</td>
<td>Intention</td>
<td>Clonazepam</td>
<td>Valproate 0 0 0</td>
<td>0</td>
<td>47 55</td>
</tr>
<tr>
<td>5</td>
<td>MS</td>
<td>Intention</td>
<td>Clonazepam</td>
<td>+ + + + +</td>
<td>84 70</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MS</td>
<td>Intention</td>
<td>Clonazepam</td>
<td>+ + + + +</td>
<td>NT NT</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>37 29</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>NT NT</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>NT NT</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>140 110</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>NT NT</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>78 63</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>NT NT</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>157 155</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>65 55</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>65 48</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>MS</td>
<td>Intention</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>NT NT</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>MS</td>
<td>Intention/ Dysarthria</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>160 180</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>MS</td>
<td>Intention/ Dysarthria</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>NT NT</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>MS</td>
<td>Intention/ Dysarthria</td>
<td>None 0</td>
<td>+ + + + +</td>
<td>54 57</td>
<td></td>
</tr>
</tbody>
</table>

Ratios of means (SEM) 1/19 14/19 12/20 0/19 87 (12)s 79 (12)s

*The figure shows the spiral copying of this patient.
†The development of dystonia in this patient dissipated patient enthusiasm to continue in the study.
NT = Not tested (generally because patients could not complete the test). Improvement was measured on a simple ordinal scale: 0 = none, + = a little, ++ = moderate, +++ = a lot of improvement; MS = multiple sclerosis.
Ondansetron, a 5-HT3 antagonist, improves cerebellar tremor.

Spiral copying performance
ders including multiple sclerosis and brain-stem strokes. Some patients with concomitant cerebellar tremor volunteered that tremor improved. This serendipitous observation prompted an efficacy finding study in a group of patients in whom tremor, but not vertigo, was a major clinical feature.

Patients and methods
Twenty patients with moderate to severe cerebellar tremor (Kurtzke functional cerebellar score ≥ 3) were recruited from the Department of Clinical Neurological Sciences. In most patients, the tremor was based on cerebellar involvement from multiple sclerosis; three had familial degenerative disorders involving the cerebellum and one had residual ataxia complicating lithium intoxication. The table outlines the clinical information and prior treatment of the patients.

Patients were excluded from the study if they had had treatment with ondansetron or if they were unwilling to fully participate in both limbs of the trial. A signed, informed consent was obtained before initiation of study procedures. Alcoholic patients were excluded. Patients were not receiving concomitant medications such as clonazepam, isoniazid, carbamazepine, or valproic acid.

Patients were randomly assigned to receive intravenous ondansetron (8 mg) or a placebo, consisting of normal saline. The drug was given by intravenous bolus injection. Peak serum concentrations are reached within 15 minutes and the drug has a half life of three to four hours. Patient assessments were made within the first 90 minutes of treatment. Patients were given the alternate agent on a subsequent day, generally a week later. The patients and the evaluators were blinded throughout the study.

The principal outcome measures were the change in performance on writing tasks (spiral copying), determined by comparing the change from a baseline attempt to the performance one hour later.

A second outcome measure was determined by the time to complete a nine hole peg test. Only 12 patients had sufficient coordination to complete this test. These clinical outcomes were measured at a baseline and at one hour after the infusion. The times for each arm were summed after a single trial. Copying exercises were performed first, followed by the peg test.

Results
The table shows the patient profiles and clinical outcomes.

A blind evaluator group (GCE, JL, PV) scored the spirals on an ordinal scale (0 = no difference apparent, + = mild improvement, ++ = moderate/marked improvement). Concordance among evaluators was excellent. The group deemed that spiral copying after ondansetron treatment, compared with baseline, was superior in 13 of the 19 patients. Only one patient was better after placebo
A role for serotonin in the treatment of cerebellar tremor is suggested by these findings and others. The cerebellum has a serotoninergic innervation. In some animal models of cerebellar ataxia, such as that caused by thiamine deficiency, there is enhanced turnover of serotonin and its metabolites. In some degenerative disorders, such as olivopontocerebellar degeneration, the concentration of 5-HT metabolites is increased in the striatum. In a group of patients with various acquired and familial cerebellar disorders, Trouillas showed that tremor was improved by 5-HT in combination with benzodiazepine. In subsequent trials, the beneficial effect of the levorotatory form of 5-HT has been shown in patients with Friedreich’s ataxia but not in another trial with patients with miscellaneous cerebellar disorders. Tremor is a side effect of treatment with selective serotonin reuptake inhibitors and this complication can be disabling.

The identification of ondansetron as an agent which could ameliorate both vertigo, with attendant nausea and vomiting, and cerebellar tremor is reminiscent of a classic observation. McLellan et al described a family in which autosomal dominant cerebellar ataxia was associated with congenital inability to vomit. Members of this family could predict who would get the ataxia later in life by identification in childhood of those who were unable to vomit. The serotonin axis might be central to this intriguing finding.

Most physicians would concede that treatment of cerebellar tremor is difficult. There have been reports of limited success with clonazepam, carbamazepine, and ondansetron.

The identification of a therapeutic response to ondansetron is worthy of further study. The serotonin axis could prove to be fertile ground for the pharmacological study of tremor.

Five patients in the original report have continued to take ondansetron on a daily basis because they derived a clinically meaningful benefit. Withdrawal of the medication has aggravated the tremor. A clinical trial is underway to assess the efficacy and durability of oral ondansetron in the management of tremor.

We acknowledge the support of the patients who participated in this trial. At our request the drug was provided by Glaxo Wellcome Canada.

Ondansetron, a 5-HT3 antagonist, improves cerebellar tremor.

G P Rice, J Lesaux, P Vandervoort, L Macewan and G C Ebers

J Neurol Neurosurg Psychiatry 1997 62: 282-284
doi: 10.1136/jnnp.62.3.282

Updated information and services can be found at:
http://jnnp.bmj.com/content/62/3/282

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/