We venous antiphospholipid phenomenon. Ported by facilitation of the encephalopathy characterised in increased CMAP during evoked potentials occurred respiratory failure. The site amplitude diaphragmatic neuropathy such phrenic studies. This finding was not severe, showed and reduced prolonged EMG of the right lateral malleolus. She was disoriented, restless, and unable to give a coherent history. There was no meningism and the optic fundi and eye movements were normal. She had a mild dysarthria and upper motor neuron facial weakness and a mild left hemiparesis with brisk tendon reflexes and a left sided sensory inattention.

We are grateful to Hussein Remtulla, chief EMG technician, for valuable assistance. UZ was supported by the Austrian Scientific Funds (Erwin Schrödinger Stipendium).

UDO ZIFKO
BRYAN G YOUNG
CHARLES P BOLTON
Department of Clinical Neurological Sciences, Victoria Hospital, 375 South Street, N6A 4G5 London, Ontario, Canada

Correspondence to: Dr Charles P. Bolton.

Fulminant encephalopathy due to the catastrophic primary antiphospholipid syndrome

The antiphospholipid antibody syndrome is characterised by recurrent arterial and venous thromboses associated with the presence of antiphospholipid antibodies.1 Neurological features can include cerebral ischaemia, multi-infarct dementia, migraine, epilepsy, transient ischaemic attacks and chorea.2

We describe a patient with catastrophic primary antiphospholipid syndrome who presented with right hemispheric dysfunction which rapidly progressed to a fulminant encephalopathy associated with multiorgan failure.

A fifty eight year old woman was admitted with a general malaise, headache, anorexia, and weight loss of four month period, associated with the development of a painful ulcer over the right lateral malleolus. In the 24 hours before hospital admission she developed confusion status, urinary incontinence, and left sided facial and limb weakness. She had a history of classic migraine for 35 years, had had several lower limb deep venous thromboses, and had been investigated for pleuritic chest pain for which no cause was established. She developed Graves' disease at 45 years of age and was treated with radioiodine followed by thyroxine. She had no relevant family medical history.

On admission there were no significant abnormalities in the cardiovascular, respira
tory, or gastrointestinal systems. She had a 5 cm skin ulcer over the right lateral malleolus. She was disoriented, restless, and unable to give a coherent history. There was no meningism and the optic fundi and eye movements were normal. She had a mild dysarthria and upper motor neuron facial weakness and a mild left hemiparesis with brisk tendon reflexes and a left sided sensory inattention.

She had thrombocytopenic (platelets 125 x 10^9/l) but her full blood count and peripheral blood film were otherwise normal. Her erythrocyte sedimentation rate was 89 mm/h and C reactive protein concentration was 386 mg/l. The prothrombin time was normal, but the activated partial thromboplastin time (APTT) was prolonged at 37.2 s (normal range 23.5–36.4 s). The D dimer assay was normal but her fibrinogen concentration was low (1:15 g/l, normal 1–4.0 g/l). Her plasma urea was slightly increased at 29 mmol/l and the plasma electrolytes, creatinine, liver function tests, bone chemistry, thyroid function, and blood glucose were normal and a veneral disease research laboratory test was negative. Urine, blood, and CSF cultures were sterile and only skin commensal organisms were isolated from the foot ulcer. A chest radiograph, ECG, echocardiogram, and brain CT were unremarkable. Lumbar puncture disclosed clear CSF, with a normal opening pressure, 6 white blood cells/ml, and normal protein and glucose concentrations.

She was treated with broad spectrum antibiotics for a presumed infection of unknown origin with a provisional diagnosis of right hemispheric ischaemic stroke. However, she became increasingly obtunded, developed signs of bilateral hemispheric dysfunction including pyramidal distribution weakness in all four limbs and bilateral extensor plantar responses. She developed livedo reticularis over her back and lower limbs. A new systolic murmur was noted at the cardiac apex. Her respira
tory function deteriorated, she became hypoten sive and oliguric, and required assisted ventilation and inotropic support.

Thyroid microsomal antibodies were present at a titre of 1 in 400, but other autoan
tibody titres were negative (including dsDNA-Ab, ANCA, and Anti-GBM-Ab). Her anticardiolipin antibody concentrations were raised (serum IgG aCL 41.5 GPL, IgM aCL 25.9 MPL, normal <10 MPL). Biopsies of the skin ulcer and an area of livedo reticularis disclosed widespread thrombosis within the small vessels but no vessel wall inflammation. Echocardiography now showed a vegetation on the mitral valve. Abdominal CT was normal and a repeat brain CT showed no abnormalities. An EEG showed diffuse generalised slow wave activity.

After a diagnosis of catastrophic antiphospholipid syndrome, she was commenced on intravenous heparin and immunosuppressed with methylprednisolone (1 g intra
vously/day), cyclophosphamide (500 mg, single dose), and plasmapheresis. Her uri
nary output increased over the next week and cardiorespiratory support was no longer needed. Her neurological condition did not improve and she remained unaware and unresponsive with no clinical evidence of cortical function but intact brainstem reflexes. She died 24 days after admission to hospital.

The most striking pathological finding postmortem was of widespread small vessel thrombosis; the tissues involved included the brain, myocardium, lung, kidney, skin, bone marrow, uterus, ovary, bladder, pancreas, stomach, and small intestine. Examination of the heart showed marantic vegetations of the mitral valve which were Gram stain and culture negative. The larger veins and arteries, including the coronary arteries, were patent with only mild atheroma seen.

Macroscopic examination of the cerebral hemispheres showed extensive confluent areas of laminar cortical infarction in the watershed zones. The midbrain, brainstem, cerebellum, and spinal cord were macroscopicall y unremarkable. Microvascular changes included small arterial and venular thrombotic occlusion in the brain, brainstem, spinal cord, and meninges. There was no associated inflammatory reaction (fig.

In the absence of convincing evidence for infection, the evolution of multiorgan fail
ure, together with livedo reticularis, sug
gested the possibility of a systemic vasculitis or a coagulopathy. Disseminated intravascular coagulation and the haemolytic uraemic syndrome were excluded by the absence of...
blood film or biochemical evidence of haemolysis. The duration of the history made a paraneoplastic syndrome unlikely and the chest radiograph and abdominal and cranial CT showed no evidence of malignancy. Repeated blood cultures before antibiotic therapy were negative reducing the likelihood of bacterial endocarditis. In the absence of ANCA or another ANIM we considered the most likely diagnostic possibilities to be ANCA-negative polyarteritis, systemic lupus erythematosus, vasculitis, thrombotic thrombocytopenic purpura, or widespread non-inflammatory intravascular thrombosis which has been associated with the presence of antiphospholipid antibodies. The negative assay for dsDNA antibodies made systemic lupus erythematosus less likely, and the previous history of recurrent venous thrombosis, leg ulceration, migraine, and the thrombocytopaenia on admission were in keeping with a diagnosis of antiphospholipid syndrome.

Acute ischaemic encephalopathy has been described in association with multorgan failure and the antiphospholipid antibody syndrome and necropsies performed on two cases disclosed similar pathological findings to those in our patient.

There is no universally accepted treatment for the catastrophic primary antiphospholipid syndrome. Various studies have reported beneficial effects from methylprednisolone, cyclophosphamide, and plasmapheresis, alone or in combination, but the role of immunosuppression is far from established. In this case, anticoagulation, immunosuppression, and plasmapheresis improved her cardiac, respiratory, and renal function, but irreversible brain damage led to a fatal outcome.

Correspondence to: Dr PF Chinnery, Department of Neurology, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.

1 Hughes GRV. The antiphospholipid syndrome: ten years on. Lancet 1993;342:341-4.

Development of the anterior cingulate syndrome in a child due to delayed necrotising methotrexate leukencephalopathy

Delay in necrotising leukencephalopathy may occur after intrathecal, intraventricular, or intravenous treatment with methotrexate (MTX) mostly in combination with radiotherapy. A clinical picture dominated by pyramidal pareses, ataxia, dysarthria, seizures, and deterioration of consciousness is reported. In one adult case of delayed necrotising leukencephalopathy, akinetic mutism as a key symptom of one of the frontal syndromes has been reported previously.

In adults three types of frontal syndromes are discerned: the dorsolateral frontal syndrome, the orbitofrontal syndrome, and the anterior cingulate syndrome. Anterior cingulate syndrome is characterised by profoundly apathetic behaviour and severe loss of initiative. Pathological features of response inhibition on go-no go tests, do not speak spontaneously, and answer questions in monosyllables, if at all. They move little, are incontinent, and eat and drink only when fed. They display no emotion, even when in pain, and are indifferent to their circumst-ances. The most severe form of anteri-or cingulate syndrome is akinetic mutism. We had the rare opportunity to study the development of anterior cingulate syndrome in a 13 year old boy with delayed necrotising leukencephalopathy.

In this previously healthy and normally developed right handed boy, acute lympho-cytic leukaemia was diagnosed at the age of 11 years. He was treated according to the current acute lymphocytic leukaemia protocol, vincristine, corticosteroids, and L-asparaginase. The CNS prophylaxis consisted of 24 Gray irradiation in 12 fractions and intrathecal injections of MTX delivered in three weeks (total dose 68-75 mg). Subsequently the patient received intrathecal MTX and intracerebral MTX during the consolidation phase and on recurrence of acute lymphocytic leukaemia in the tests 18 months after diagnosis. When he was 13 years old he developed a left peripheral facial nerve paresis due to a second recurrence of acute lymphocytic leukaemia. The patient was treated according to a CNS recurrence protocol including intrathecal sandwich therapy of MTX in combination with cytosine-arabinoside (ARA-C) up to a total dosage of 132 mg MTX and 240 mg ARA-C.

Three weeks after the last intrathecal MTX infusion he was admitted because he had changed within four days from a talkative boy of superior intelligence into a child that only answered questions after strong stimulation.

Neurological examination showed a diminished facial expression, eye blinking, and extensor plantar reflexes in addition to a slight left peripheral facial nerve paresis.

Brain CT showed hypodense slightly swollen white matter bilaterally in the fron-toparietal part of the centrum semiovale with a slight preponderance on the right side (figure, A). Repeated CSF examinations showed normal cell counts. Immuno-phenotyping did not show lymphoblasts.

Spontaneous speech was almost absent. When stimulated he answered in a telegraphic style. By contrast, he could repeat long sentences and read aloud a difficult text, monotonously but without language and articulatory problems. The token test did not show language comprehension problems. No signs of apraxia were present. On a standardised memory test (15 words test) he obtained a very low score (first decile). His IQ was 76 (Groninger intelligence test). One week later he became severely hypokinetic and developed a paralysis of the left arm and leg and was unable to make voluntary orofacial movements. Involuntary movements such as yawning and swallowing remained intact. He also became mute, but he communicated to yes or no questions by lifting the right hand.

Two weeks after admission CT showed extension of the hypodense white matter lesions into the parietal regions. Desamethasone treatment was started and subsequently the hemiparesis ameliorated and voluntary orofacial movements were again possible.

Four weeks after admission he showed a slight left peripheral facial nerve paresis and a slight bilateral pyramidal paresis more so on the left than on the right side. Grasp reflexes could be easily elicited in both hands. He was able to walk independently. He did not attempt to speak and could not be stimulated to talk spontaneously, repeat words, or read aloud. By contrast, he could name objects and answer questions by writing. He obeyed written and spoken commands. He remained in this condition for the next five weeks. Finally he died from an acute subdural haemotoma, a sequel of the acute lymphocytic leukaemia.

An extensive recurrence of the acute lymphocytic leukaemia was found with lymphoblast cells in the subarachnoid spaces and in the perivascular spaces, especially of the frontoparietal regions. Large, sharply demarcated necrotic areas were seen bilaterally in the frontostriatal white matter, not involving the U fibres (figure, B). The cere-

Figure 1 (A) CT of the brain at admission three weeks after the last intrathecal MTX administration. Note the hypodensity of the white matter in the frontoparietal region, more so on the right side than on the left side. (B) horizontal brain section stained with haematoxylin and eosin. Midline structures were cut to process each half of the brain separately. The level of the section corresponds with the level of the CT. Note the two symmetric necrotic lesions in the subcortical white matter in the precentral part of the centrum semiovale in both hemispheres. The U fibres are spared.
Fulminant encephalopathy due to the catastrophic primary antiphospholipid syndrome.
P F Chinnery, P J Shaw, P G Ince, G H Jackson and R I Bishop

J Neurol Neurosurg Psychiatry 1997 62: 300-301
doi: 10.1136/jnnp.62.3.300

Updated information and services can be found at:
http://jnnp.bmj.com/content/62/3/300.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/