Adult polyglucosan body disease associated with an extrapyramidal syndrome

N P Robertson, S Wharton, J Anderson, N J Scolding

Abstract
A 50 year old patient is described who presented with parkinsonism, frontal dementia, peripheral neuropathy, neurogenic bladder, and upper motor neuron signs. No improvement in objective measurements of extrapyramidal dysfunction were seen with an incremental apomorphine test or more prolonged oral dopamine challenge. Neurophysiology disclosed changes compatible with a diffuse axonal neuropathy and pathological examination of a length of sural nerve taken at biopsy showed multiple polyglucosan bodies characteristic of adult polyglucosan body disease (APGBD). This case underlines the diverse clinical presentation of this rare neurological disease and the importance of recognising the unusual association of clinical features in making the diagnosis. APGBD should be included in the differential diagnosis of parkinsonism unresponsive to dopaminergic therapy.

(J Neurol Neurosurg Psychiatry 1998;65:788–790)

Keywords: adult polyglucosan body disease, parkinsonism

Adult polyglucosan body disease (APGBD) was first described in 1980 and remains a rare neurological disease with some 25 cases so far reported (table). It derives its name from the accumulation of rounded intra-axonal inclusion bodies in the central and peripheral nervous system. Its most consistent features are onset in the fifth to seventh decades (88%), peripheral neuropathy (80%), dementia (64%), neurogenic bladder (72%), and upper motor neuron signs (80%), although most patients have one or more of these features missing and some rarer clinical phenomena have been noted. Here we report on a woman with classic features of APGBD and the unusual association of an extrapyramidal syndrome underlining the diverse clinical presentation of this disease.

Case history
A fifty year old woman who until six months previously had worked as a teacher initially presented with a two year history of speech disturbance consisting of slow, low volume speech. One year later she had developed poor balance, frequent falls, tremor predominantly affecting her right hand, urinary urgency, and

Reported cases of adult polyglucosan body disease

<table>
<thead>
<tr>
<th>Author</th>
<th>Age at onset</th>
<th>Sex</th>
<th>Upper motor neuron signs</th>
<th>Neuropathy</th>
<th>Dementia</th>
<th>Urinary dysfunction</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suzuki et al</td>
<td>59</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Peres et al</td>
<td>47</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Robitaille et al</td>
<td>43</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Okamoto et al</td>
<td>64</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Vos et al</td>
<td>46</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gray et al</td>
<td>68</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Cafferty et al</td>
<td>53</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
<tr>
<td>Losso et al</td>
<td>51</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Amyotrophy</td>
</tr>
<tr>
<td>Sugiyama et al</td>
<td>55</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Optic atrophy</td>
</tr>
<tr>
<td>Bruno et al</td>
<td>47</td>
<td>F</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>Cerebellar atrophy</td>
</tr>
<tr>
<td>McDonald et al</td>
<td>50</td>
<td>M</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Amyotrophy</td>
</tr>
<tr>
<td>Matsumura et al</td>
<td>70</td>
<td>F</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>Amyotrophy</td>
</tr>
<tr>
<td>Boulan-Predseil et al</td>
<td>65</td>
<td>F</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>Amyotrophy</td>
</tr>
</tbody>
</table>

M:F 1:2.8 20/25 (80%) 21/25 (84%) 16/25 (64%) 18/25 (72%)
impaired concentration and episodic memory. The neurological deterioration was gathering pace so that she was soon unable to walk without bilateral support around the house and required a wheelchair for longer distances. There was no history of neurological disease in her family, her parents were not consanguinous, and there was no history compatible with epilepsy or myoclonus from the patient.

On examination she had slow, hypomimic speech with a paucity of facial expression and variable dysphonia, extraocular eye movements were intact and there was no jaw jerk. In her limbs she had a coarse resting tremor, most marked in the right arm with no associated cerebellar signs but cogwheeling rigidity and bradykinesia. There was wasting in the small muscles of the hands and below the level of the knees bilaterally with mild weakness of all ankle movements and high arched feet. Deep tendon reflexes were absent at the ankle, brisk at the knees, and associated with bilateral extensor plantar responses. Sensation to vibration was absent to the mid-shins and impaired to light touch and pin prick to the knees. Her gait was slow, festinating, and bradykinetic. Formal neuropsychological evaluation disclosed impaired mental arithmetic, immediate and delayed recall, weak verbal fluency, and impaired executive function suggesting frontal lobe dysfunction. Tests of concentration, naming, and visuospatial analysis were normal.

Cranial CT was normal and a whole spine MRI demonstrated moderate degenerative changes only. No improvement in objective measurements of extrapyramidal dysfunction were seen with an incremental apomorphine test or more prolonged oral dopamine challenge. Neurophysiology showed changes compatible with a diffuse axonal neuropathy but extensive blood and serological tests failed to disclose a cause for this so a sural nerve biopsy was taken.

A 1cm length of sural nerve was submitted for histopathological examination. Ten nerve fascicles were present in cross section, all of which showed moderate diffuse loss of both small and large myelinated axons. The presence of occasional axonal clusters were indicative of axonal sprouting. Several axons (almost one per fascicle on average, two within some fascicles) contained large, rounded intra-axonal inclusions which were metachromatic with toluidine blue staining. The inclusions, which were a maximum of 30 µm in diameter, had a darker staining centre with a lighter halo and stained strongly positive with periodic acid Schiff (PAS). The appearances were typical of polyglucosan bodies. Teased fibre preparations demonstrated a few fibres in late stage Wallarian degeneration and an occasional polyglucosan body (figure). The appearances were those of axonal neuropathy with polyglucosan body deposition and in the context of the clinical picture were consistent with a diagnosis of APGBD.

Discussion

The presence of polyglucosan bodies on their own is a non-specific finding as they are also found in normal subjects with increasing age (although they occur less commonly in sural nerves compared with intramuscular nerves), and occasionally in diabetic neuropathies and primary axonal neuropathies. However, they are also characteristically seen in some clinical situations including Lafora body disease and type IV glycogenosis, but they occur in much greater frequency in APGBD, particularly in nerve processes rather than perikarya (by contrast with Lafora bodies) and astrocytes. The diagnosis may be made by the association of
the appropriate clinical phenotype with excessive numbers of polyglucosan bodies seen on peripheral nerve biopsy predominantly in myelinated fibres, which is considered to be highly specific. Some authors have advocated axillary skin biopsy as a less invasive diagnostic method, which discloses an abundance of polyglucosan bodies in myoepithelial cells of apocrine glands. In one third of cases of APGBD there is a positive family history indicating a significant genetic component inherited in an autosomal recessive pattern. Polyglucosan bodies are seen throughout the central and peripheral nervous system as well as myocardium and non-neural tissues at postmortem, suggesting a generalised storage disorder. The presence of polyglucosan bodies before the age of 5 on peripheral nerve biopsy is always pathological and the diagnosis should also be considered in adults when there is more than one polyglucosan body per nerve fascicle or the presence of extraneuronal polyglucosan bodies or unusually large bodies (>30 μm). Histogramically they stain positively with PAS (diastase resistant), silver proteinate, and iodine, but are negative with Sudan black, luxol fast blue, and Congo red. On electron microscopy they consist of branching filaments with amorphous and granular material. They are composed predominantly of abnormally branched glycogen (amylopectin) and are identical in composition to corporea amylacea and Laforta and Bielschowsky bodies. Clinical phenomena usually consist of a mixture of lower and upper motor neuron signs, dementia, and urinary dysfunction. Features may be asymmetric, and reports of presentation with an amyotrophic lateral sclerosis phenotype are rare, but that a small subgroup may be explained on the basis of an inherited tissue specific defect of a branching iso-enzyme. In this patient the presence of an axonal neuropathy, mild frontal dementia, upper motor neuron signs, and a history of urinary dysfunction associated with excessive numbers of polyglucosan bodies on sural nerve biopsy is characteristic of APGBD. It remains possible that the presentation of a pontine oculomotor cranial nerve neuropathy merely represents a chance association of a rare disorder with a more common one. However, the lack of response to dopamine, as well as the fact that polyglucosan bodies are known to accumulate pathologically within the CNS in APGBD, seems to indicate that it is more likely to be directly the result of the more widespread pathological process and is almost certainly another example of the heterogeneous nature of this unusual disease.

Adult polyglucosan body disease associated with an extrapyramidal syndrome

N P Robertson, S Wharton, J Anderson and N J Scolding

J Neurol Neurosurg Psychiatry 1998 65: 788-790
doi: 10.1136/jnnp.65.5.788

Updated information and services can be found at: http://jnnp.bmj.com/content/65/5/788

These include:

References
This article cites 21 articles, 2 of which you can access for free at: http://jnnp.bmj.com/content/65/5/788#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Dementia (988)
- Drugs: CNS (not psychiatric) (1878)
- Memory disorders (psychiatry) (1352)
- Neuromuscular disease (1271)
- Parkinson's disease (669)
- Peripheral nerve disease (615)
- Radiology (1688)
- Surgical diagnostic tests (378)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/