LETTERS TO THE EDITOR

Creutzfeldt-Jakob disease presenting as complex partial status epilepticus: a report of two cases

Creutzfeldt-Jakob disease is a transmissible human spongiform encephalopathy which may be familial, iatrogenic, or sporadic. The classic clinical features include a rapidly progressive dementia with the patient retaining clear consciousness until the terminal stages of the disease. We report on two patients presenting with a rapidly declining level of consciousness, in whom the clinical picture and EEG were suggestive of complex partial status epilepticus.

The first patient was a 58 year old woman who was admitted to a psychiatric unit with a short history of mood disturbance, confusion, and unsteadiness. A provisional diagnosis of agitated depression was made and she was started on lofepramine. She then became unsteady on her feet and required support when walking. She had had occasional complex partial seizures for 30 years but at presentation was not taking any anticonvulsant drugs.

On examination, she appeared perplexed, tearful, and agitated, and was unable to give a coherent history. She was intermittently confused and her gait was ataxic. There were no other cerebellar signs. The rest of the neurological examination was unremarkable although limited by poor cooperation. She became more withdrawn and uncommunicative with incontinence of urine. She would occasionally jump when sitting in a chair.

Brain CT and MRI were normal, as was her CSF. An EEG showed frequent, almost continuous variable amplitude sharp waves in all areas, although with a right sided emphasis, with a repetitive appearance up to 2 per second (figure). The record was thought to be in keeping with partial status epilepticus.

Her level of consciousness deteriorated despite intravenous valproate and phenytoin and she was transferred to the intensive care unit for continuous EEG monitoring. On arrival, she was deeply unconscious and despite aggressive management of her presumed complex partial status she died 3 weeks later. Histology of the brain was diagnostic of the sporadic form of Creutzfeldt-Jakob disease.

The second patient was a 68 year old man who was admitted with a short history of mood disturbance, confusion, and inappropriate behaviour. He appeared not to recognise his family. Initially he was dysphasic and obtunded. His consciousness level deteriorated and he became mute with evidence of right sided weakness. All investigations, including contrast enhanced brain CT and CSF examination were normal. An EEG was reported as showing virtually continuous semirepetitive sharp waves with some right sided predominance. Although seizure-like evolution of discharges was not seen, the electrographic picture was considered to be in keeping with complex partial status.

Initial EEG at presentation in an acute confusional state, showing virtually continuous semirepetitive sharp waves with some right sided predominance. Although seizure-like evolution of discharges was not seen, the electrographic picture was considered to be in keeping with complex partial status.

EEG report, suggesting partial status epilepticus, prompted treatment, unsuccessfully, with anticonvulsant drugs and subsequent transfer for continuous EEG monitoring. This disclosed marked fluctuations, including discrete runs of rhythmic sharp waves that were considered to be electrographic seizures. Even after sustained burst suppression, the recording fluctuated between generalised periodic discharges and periods of relative inactivity within a matter of seconds.

In the second case, the patient developed focal seizures and PLEDs on the EEG. The initial recordings were suggestive of complex partial status, with asymmetric discharges abolished by diazepam but without any observable clinical change. Subsequent recordings were more characteristic of Creutzfeldt-Jakob disease, particularly as the patient had developed myoclonus. Although the electrographic changes were abolished by diazepam, suggesting seizure activity, the modification of both clinical and EEG activity in Creutzfeldt-Jakob disease by benzodiazepines has been reported giving rise to further confusion with epileptiform sharp wave activity. The focal nature of the patient’s signs and the laterisation on the EEG is well recognised in Creutzfeldt-Jakob disease as are

which were attenuated by a bolus of intravenous diazepam but without any improvement in his clinical condition.

He was transferred to this hospital for artificial ventilation because of the concern that he was in complex partial status. On admission he was mute, his eyes were closed, and he flexed to pain on the left side only. Intermittent twitching of both sides at a rate of between 1 Hz–2 Hz was seen. Reflexes were brisk and symmetric. His right plantar response was extensor, his left flexor.

A further EEG 5 days later showed generalised asynchronous continuous periodic sharp waves occurring at a frequency of 1.3 Hz, at times in the form of biphasic or triphasic complexes. Myoclonic jerks occurred during the recording.

It was considered that overall these features were consistent with a diagnosis of Creutzfeldt-Jakob disease. His condition continued to deteriorate and he died 2 weeks later. A request for a postmortem examination was refused.

These two cases illustrate a previously unrecognised presentation of Creutzfeldt-Jakob disease, namely presumed complex partial status.

In the first case, the interpretation of the EEG findings was made more difficult by the patient’s depressed conscious level and the previous history of complex partial seizures, albeit mild. The initial psychiatric presentation, with mood and behaviour disturbance, as well as fluctuating confusion, was compatible with complex partial status. The initial EEG report, suggesting partial status epilepticus, prompted treatment, unsuccessfully, with anticonvulsant drugs and subsequent transfer for continuous EEG monitoring. This disclosed marked fluctuations, including discrete runs of rhythmic sharp waves that were considered to be electrographic seizures.

Even after sustained burst suppression, the recording fluctuated between generalised periodic discharges and periods of relative inactivity within a matter of seconds.
periodic PLEDs, which are often associated with contralateral myoclonic jerks. The two cases described here illustrate that a diagnosis of Creutzfeldt-Jakob disease should be considered where a rapid decrease in consciousness is accompanied by EEG changes apparently compatible with complex partial status. When there is a clinical suspicion of Creutzfeldt-Jakob disease, the ideal method of monitoring such patients is with continuous EEG recording, allowing documentation of rapid fluctuations. The present cases are atypical in that the progression from presentation to death was rapid, but they underline the fact that minute to minute changes in EEG rhythm, asymmetry, and electrographic responsiveness to benzodiazepines can all be seen in Creutzfeldt-Jakob disease.

J H REES
S J SMITH
D M KULLMANN
N P HIRSCH
R S HOWARD
National Hospital for Neurology and Neurosurgery, Queen Square, London, UK

Correspondence to: Dr J H Rees, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK


Childhood demyelinating diseases with a prolonged remitting course and their relation to Schilder’s disease: report of two cases

Schilder’s disease or myelinoclastic diffuse sclerosis is a rare acute or subacute demyelinating disorder which primarily affects children and young adults. We report the clinical and neuroradiological follow up of two boys affected by a demyelinating disease with a prolonged relapsing-remitting course, response to corticosteroids, and relatively good long term prognosis.

The first patient presented at the age of 12 with a 2 month history of repeated episodes of headache and blurred vision following by weakness in the left leg, lasting a few hours. Head CT and bilateral carotid angiography were normal. Two weeks later the left hemiparesis and headache recurred. T2 weighted images on brain MRI disclosed a hyperintense signal in the right parieto-occipital white matter, involving the right centrum semiovale, with mass effect.

The second patient was admitted at the age of 4 because of the sudden onset of headache and vomiting with ataxia and drowsiness followed by generalised clinical seizures. Clinical examination on admission showed left hemiparesis, anosocoria (left>right), and dysarthria. Ocular funduscopy was normal. Head CT disclosed a reduced right lateral ventricle and subarachnoid spaces and, 1 week later, a small hypodense area in the right periven-tricular white matter. A carotid angiogram was normal at the age of 5. The child had a second episode characterised by high fever, vomiting, sixth nerve bilateral paresis, dysar-thria, truncal ataxia, and stupor. Treatment with corticotrophin (35 units daily for 5 days, then every 48 hours for 20 days) induced a rapid clinical improvement. From the ages of 5 to 14 the child had yearly relapses characterised by the sudden onset of left hemiparesis with variable involvement of the cranial nerves and impairment of consciousness associated with inconsistent alteration of white matter on brain CT (widespread hypodensity in the right centrum semiovale with a mass effect on the right ventricle).

In both cases the overall findings raise the question of myelinoclastic diffuse sclerosis. 1,2 A prerequisite for the diagnosis is a normal very long chain fatty acid plasma concentration. Clinical signs include an intracranial hypertension syndrome, mental deterioration, hemiplegia, and visual field defects. The disease has either a monophasic course, rarely rapid and fatal, or a relapsing-remitting course. Most patients have neurological sequelae during follow up but few patients fully recover. 3 Histological studies typically show a demyelinating process similar to that of multiple sclerosis, with an inflammatory perivascular infiltrate, and in severe cases, cystic lesions. Neuroimaging findings tend to parallel the clinical course. Corticosteroids may improve the outcome of the single relapse and possibly of the disease, as they did in our patients. Some patients respond to immunosuppressive therapy.

In both the patients the described association of headache, signs of diffuse and focal brain dysfunction, a relapsing course, and the response to corticosteroids, also raise the possibility of an isolated CNS angiitis, a condition primarily affecting middle aged and elderly people. But neither cerebral angiography nor histological examination disclosed a primary vascular disorder. In addition the early onset and the sporadic occurrence of the disorder rule out another recently described vasculopathy often associated with familial hemiplegic migraine. 4

In conclusion, although demyelinating diseases that do not fulfill the classical definition of multiple sclerosis or encephalomyelitis remain difficult to label in children, the two cases we report here seem to fit Schilder’s description of myelinoclastic diffuse sclerosis. Owing to the current lack of knowledge on the causes of this disease strict diagnostic criteria cannot be applied. Some presentations may warrant brain biopsy. The differing clinical and neuroradiological features seen in these patients may help in delineating Schilder’s disease subtypes.

VINCENZO LEUZZI
Dipartimento di Scienze Neurologiche e Psychiatriche dell’Età Evolutiva, Università La Sapienza, Roma, Italy

GILLES LUYON
MARIA ROBERTA CILIO
Service de Neupédiatrie, Université Catholique de Louvain, Bruxelles, Belgium

JEAN MICHEL PEDESPAN
DANIEL FONTAN
Unité de Neurologie Infantile

JEAN-FRANCOIS CHATEIL
Unité de Neuroradiologie

ANNE VITAL
Unité de Neuraphathologie, Centre Hospitalier Pelagrin, Bourgoin, France
Guillain-Barré syndrome after heat stroke

Heat stroke is usually not listed among the causes of Guillain-Barré syndrome. Two cases of a Guillain-Barré syndrome-like polyneuropathy after heat stroke are on record, although without reference to electromyography.¹ We report on a patient, who developed Guillain-Barré syndrome 10 days after severe heat stroke. He had electrophysiological evidence of demyelination, increased CSF protein, and high anti-GM1 antibodies.¹ The acute phase reaction was normal, and sural nerve conduction was moderately slowed (36 m/s) at day 2. Needle EMG disclosed abundant fibrillations and positive sharp waves in proximal and distal limb muscles at day 9.

Decreased sweating due to anticholinergic medication, cocaine induced increased heat production, and high ambient temperature precipitated heat stroke in our patient. Ten days after onset of heat stroke we found an acute neuropathy that met clinical and neurophysiological criteria for Guillain-Barré syndrome. Similar time delays have been seen in two other patients with Guillain-Barré syndrome-like neuropathy after heat stroke¹ and in the second of two patients reported as critical illness neuropathy.¹ This patient had increased CSF protein and fasciculations which are unusual in critical illness neuropathy.¹ We may have Guillain-Barré syndrome as well. Weakness evolved with delay in these four patients with Guillain-Barré syndrome-like neuropathy, whereas it was present immediately after hyperthermia in five more patients, who probably did not have Guillain-Barré syndrome. One patient with heat stroke was tetraparetic when he regained consciousness.¹ He had pyramidal and cerebellar signs and persistent atriopeptic weakness due to axonal or motor neuron loss and no neurophysiological evidence for demyelination. Four of 14 patients with cancer exposed to whole body hyperthermia had clinical and electromyographic evidence of weakness immediately after hyperthermia.¹ Their nerve conduction abnormalities are reported as “compatible with scattered demyelination”.

Our patient had chronic HCV infection which may be associated with vasculitic neuropathy and cryoglobulinaemia, both absent in our patient. A connection between Guillain-Barré syndrome and non-A, non-B hepatitis and Epstein-Barr hepatitis associated with the Guillain-Barré syndromey.¹ The presence of an acute inflammatory cytokine response after heat stroke may help in the autoimmune phenomena that characterize Guillain-Barré syndrome.

Enzyme linked immunosorbent assay (ELISA) normal below 120 U/l but only moderately increased IgA antibodies against GM1. Only one of 20 patients with Guillain-Barré syndrome examined in the laboratory had higher anti-GM1 IgM antibodies. The anti-GM1 IgA antibodies were normal 8 weeks after aplasmapheresis.

Compound motor action potentials were <0.7 mV in all tested nerves from day 2 to day 95. Distal latencies were more than 150% above the upper limit of normal in the left peroneal nerve. Conduction velocities were below 70% of the lower limit of normal in the left peroneal and the left median nerve. F latency was above 150% of the upper limit of normal in the left median nerve. F responses were missing in both median nerves and in the right peroneal nerve. A conduction block was present along the right ulnar nerve (wrist stimulation 0.69 mV, plexus stimulation 0.37 mV). Abnormal temporal dispersion and possible conduction block was present in the left ulnar nerve (wrist stimulation amplitude 0.36 mV; duration 8.6 ms; elbow stimulation amplitude 0.19 mV; duration 10.2 ms). Median sensory nerve conduction was normal and sural nerve conduction was moderately slowed (36 m/s) at day 2. Needle EMG disclosed abundant fibrillations and positive sharp waves in proximal and distal limb muscles at day 95.

Hydrodynamic performance of a new siphon preventing device: the SiphonGuard

Around 10% to 30% of shunt revisions may be attributed to posture related overdrainage. Of the various siphon preventing devices available at present, two construction types are the most prominent: those using a gravitational mechanism and those using a subcutaneous membrane. Gravitational devices such as Diurart-Cordis, Horizon Vertical Valve, Chhabra Valve, Fuji Valve, or Miether Dual-Switch Valve are widely used.¹ Their main drawback is susceptibility to malfunction when the shunt becomes displaced from its vertical axis after implantation and unpredictable operation during persistent bodily movements. The membrane devices: the Anti-Siphon Device (ASD, Heyer Schuck-©), or Siphon Control Device (SCD, Medtronics’ PS Medical) have generally proved clinically effective,¹ although in some cases these devices may obstruct the CSF drainage when the subcutaneous pressure increases or the scar tissue isolates the device from atmospheric pressure. The flow regulat-
ing Orbis-Sigma Valve (Elekta-Cordis) may also reduce clinical complications related to overdrainage in the upright body position. It prevents excessive CSF drainage by instantaneously increasing its hydrodynamic resistance when the drainage rate rises.

The new Codman SiphonGuard switch device is intended to reduce the drainage rate when the flow dramatically increases during transition from a horizontal to vertical body position. It consists of two passages for the CSF drainage. In the central, wide channel a ball on spring valve is inserted. The valve, unlike in all hydrocephalus shunts, is normally open and closes when the flow rate exceeds the specific threshold level. Then the drainage of CSF is diverted to a much thinner channel, which constitutes a high hydrodynamic resistance. This action may help to prevent posture related overdrainage.

We tested a sample of three SiphonGuard valves (kindly provided by Johnson and Johnson) in the United Kingdom Shunt Evaluation Laboratory to characterise the hydrodynamic performance of the device and its ability to reduce posture related overdrainage.

The pressure flow performance curve consisted of two straight lines of different slopes, both crossing the origin. They represent the two possible states of the SiphonGuard—low resistance (mean of 1.5 mm Hg/ml/min) and high resistance (mean of 4.2 mm Hg/ml/min, figure A). The differential pressures resulting from the above values, providing the CSF flow is on average 0.3 ml/min in the horizontal body position, would be 0.45 mm Hg and 12.6 mm Hg respectively.

Switching between low and high resistance was initiated by a flow rate, the threshold of which varied between 0.7 and 1.8 ml/min (figure B).

Switching from the high to low resistance was initiated by the differential pressure decreasing below the threshold from 4 to 6 mm Hg.

Overall, the mechanism of the SiphonGuard seemed to work according to the designers’ intention. It is supported by the concept that, during rapid transition from horizontal to vertical body position, initial flow rates increase above 2–3 ml/min. This is enough to switch the valve to the high resistance state, limiting overdrainage. However, in practice, it may not always be the case. In patients with small or slit ventricles previously having overdrainage, CSF may not be available to produce the flow at such a high rate. Moreover, because reliable switching occurs above 1.8 ml/min, in shorter persons or in patients resting persistently in a semisitting position (for example, elderly patients watching TV or reading books) the drainage decreases to that described for the Orbis-Sigma Valve. Moreover, it may not prevent the overdrainage related to postural changes of pressure resulting from the difference between the operating pressures for low and high resistance—similar to that described for the Orbis-Sigma Valve. In vivo, the device may contribute to the significant fluctuations of pressure resulting from the difference between the operating pressures for low and high resistance—similar to that described for the Orbis-Sigma Valve.

In cases of underdrainage related to postural changes of pressure waves, as often reported in paediatric cases, underdrainage may remain “locked” in the high resistance state, causing underdrainage in the horizontal body position.

(A) Pressure-flow performance curves for the SiphonGuard for the low and high resistance states. (B) Switching between low and high resistance states was monitored by repetition of triangularly increasing and decreasing perfusion rate (lower plot in µl/min) controlled by computer controlled infusion pump. Switching point may be demonstrated by an abrupt increase in the pressure measured across the device (upper plot). The same device changed the resistance state at variable flow rate from 0.7 to 1.5 µl/min.

Correspondence to: The UK Shunt Evaluation Laboratory, Academic Neurosurgical Unit, Addenbrooke’s Hospital, PO Box 167, Cambridge CB2 8QQ, UK. Fax 0044 1223 216926; email ZC200@MEDSCHL.CAM.AC.UK

Convulsions induced by donepezil

Donepezil, a centrally acting acetylcholinesterase inhibitor, has been recently introduced for the symptomatic relief of cognitive impairment in patients with mild to moderate Alzheimer’s disease. Several adverse events thought to be related to donepezil have been reported so far, the most common ones being gastrointestinal disturbances due to cholinomimetic effects of donepezil.1 Convulsions have not been reported for donepezil to date. We report on a patient with mild Alzheimer’s disease who presented with convulsions during treatment with donepezil.

The patient was a highly educated, ApoE4 homozygous, 72 year old man, who was diagnosed with dementia of probable Alzheimer’s type (NINCDS-ADRDA criteria) 14 months previously. His medical history, with the exception of non-familial dementia, was unremarkable and his only medication was 100 mg aspirin daily. His mini mental state examination score was 22 points. He was treated with 5 mg donepezil once daily for 2 weeks, and then 10 mg a day for 23 days when he was admitted due to convulsions. The patient was unconscious for 40 minutes with urinary incontinence and bitten tongue. Blood analyses were normal. A contrast brain CT showed mild degree of cortical atrophy with no structural lesions. EEG showed mild and diffuse neuronal dysfunction with the absence of grafoelements indicative of epilepsy, which was discontinued and no other therapy was instituted. Six weeks later 5 mg donepezil once daily was restarted. On day 52 of donepezil treatment the patient’s caregiver had reported loss of consciousness and convulsions in our patient. The donepezil was discontinued and 100 mg indomethacin a day was prescribed. For the subsequent 8 months the patient has been convulsion free and his current mini mental state examination score is 18.

Convulsions in Alzheimer’s disease are rare until late in the illness, when up to 5% of patients reportedly have infrequent seizures.6 We think that convulsions reported in our patient could be due to donepezil. It has already reported that some centrally acting cholinesterase inhibitors—that is, tacrine, varenclam, and physostigmine—might induce convulsions in patients with Alzheimer’s disease. The mechanism of convulsive action of acetylcholinesterase inhibitors is not clear. As donepezil seems a useful drug in some of the carefully selected patients with mild to moderate dementia of Alzheimer’s type we think that this report will extend our knowledge of donepezil’s safety profile.

T BABIC
N ZURAK

Department of Neurology, Medical School University of Zagreb, Klišanaeta 12, 10000 Zagreb, Croatia

Correspondence to: Dr T Babic, Department of Neurology, Medical School University of Zagreb, 10000 Zagreb, Kaptolcova 12 Croatia. Telephone: 00385 1 217280; fax 00385 1 235595; mobile 00385 98 235351; email: tomslav.babic@zg.tel.hr


Severe toxic neuropathy due to fribates

The main adverse effects of lipid lowering agents in the fibrate family involve the gut, the skin, the liver, the blood, and the muscular system. Some of these complications are more frequent when renal failure exists.1 Here we report a case of neuropathy secondary to long term treatment with fenofibrate to a patient without renal failure taking recommended doses.

A 60 year old man was seen in September 1996 complaining of leg pain for 6 months. His relevant medical history included coronary artery disease treated for 10 years with 6 mg molsidomine/ day and 60 mg isosorbide dinitrate/ day, high blood pressure and hyperlipidaemia treated respectively with 100 mg atenolol/ day and 1 mg fenofibrate/day for the past 5 years. He complained of paraesthesiae along the posterior aspect of both thighs, later complicated by progressive muscle weakness.

The physical examination disclosed a patient incapable of standing on his toes or heels. No proximal muscle weakness was present. The deep tendon reflexes were reduced in all limbs. There was no sensory loss to light touch, vibratory sense, pain perception, and joint position sense. There was no disturbance of sphincter control or postural fainting and no impairment of potency to suggest dysautonomia. The rest of the physical examination was within normal limits. The EMG suggested an axonal sensorimotor neuropathy with reduced amplitude of nerve action potentials without any significant slowing of conduction velocity. There were spontaneous fibrillations in the right tibial anterior muscle. The complete blood count, erythrocyte sedimentation rate, fibrinogen, C reactive protein, and serum ferritin were normal. There was no disturbance of anti-nuclear factor, serum and urinary immunoglobulin, complement, serum and urinary immunoelectrophoresis, circulating immune complexes, serum complement, ANCA, or anti-antineoplastic antibodies and antilygolipid antibodies were not detected. Two CSF examinations were performed: the CSF contained 1 white cell/mm³, the protein concentration was 2.5 mmol/l. Accessory salivary gland biopsy was performed: the CSF contained 1 white cell/mm³, the protein concentration was 65 mg/dl, the glucose concentration was 2.5 mmol/l.

Because of the patient’s low serum cholesterol and triglycerides and the delay between initial treatment withdonepezil and the onset of symptoms, the role of fenofibrate was confirmed by regression of the symptoms after discontinuation of this drug without the addition of any other treatment. There are no previous reports of histological findings in neuropathy due to fibrates. The delay between initial treatment with donepezil and the appearance of the symptoms as well as the time required for them to regress, suggest a cumulative toxic effect but no other predisposing risk factor such as high dosage or renal failure was present.

In conclusion, fibrates can be responsible for neuropathies even when given in approved doses and in the absence of renal failure.

P CORCIA
B DE TOPOLE
C HOMMET
A AUTRET

Clinique Neurologique
AP JONVILLE-BERA
Service de pharmacovigilance, CHU Bretonneau, 2 bis boulevard Tonnelle, 37044 Tours Cedex, France

Correspondence to: Dr P Corcia, Clinique Neurologique, CHU Bretonneau, 2 bis Tonnelle, 37044 Tours. Cedex, France. Fax 0033 2 47 38 08; email: corcia@med.univ-tours.fr


CORRESPONDENCE

Macs with multiple sclerosis

Rothwell and Charlton1 have suggested that Scottish ancestry is associated with an increased susceptibility to multiple sclerosis. They make the novel observation that a higher than expected proportion of patients with multiple sclerosis had Scottish surnames as defined by the prefix Mc or Mac. They quote that the percentage of patients with surnames prefixed with Mc or Mac with Scottish ancestry is associated with an increased risk of MS. They suggest that the percentage in north east Scotland is not associated with an increased risk of MS. However, a recent Swedish study suggested that Scottish surnames are associated with an increased risk of MS. They propose that these differences may reflect geographical differences in the prevalence of MS. They also suggest that the higher percentage of patients with Scottish surnames in the Highlands and Islands with a surname of Mc or Mac is 22.6%. They then suggest that this is the percentage which Mc or Mac in Orkney and Shetland but these islands are not part of the Highlands and Islands. In Orkney and Shetland, in fact, only 3.5% of the population have a surname beginning with Mc or Mac, which is much lower than the percentage in north east Scotland—namely 7.5%.

Rothwell and Charlton do make the point, however, that an increase in the proportion of surnames prefixed with Mc or Mac with latitude within Scotland is not associated with an increase in the prevalence of multiple sclero-

Downloaded from http://jnnp.bmj.com/ on October 9, 2016 - Published by group.bmj.com
sion. Indeed this is borne out by the prevalence figure for the Western Isles of Scotland of only 81 per 100 000, which is one of the lowest prevalence rates found in the United Kingdom and yet these islands have the highest percentage of Scottish surnames.

DAVID I SHEPHERD
Department of Neurology, North Manchester General Hospital, Crummpall, Manchester M6 8HB, UK


High incidence and prevalence of multiple sclerosis in south east Scotland: evidence of a genetic predisposition

We read with interest the results of Rothwell and Charlton regarding the incidence and prevalence of multiple sclerosis in south east Scotland. They have identified standardised multiple sclerosis prevalence rates for the Lothian and Border Regions of 203 and 219 per 100 000 respectively, the results challenging the theory that the high prevalence rates previously reported in Scotland are peculiar to the north east and its offshore isles. The authors postulate that the apparent step in prevalence rates between England and Scotland may be due to the distinctive Celtic ancestry of the Scottish population as can be crudely measured by surnames prefixed with Mc or Mac.

In Northern Ireland we have also identified a much higher prevalence rate for the disease than exists in England and Wales and have speculated that the similar rate to that in Scotland is at least partly a function of the common ethnic origins of the two populations. The contiguous region of Coleraine, Moyle, Ballymena, and Ballymoney lies less than 20 miles from Scotland at its closest point and has a standardised prevalence rate for all multiple sclerosis, based on the 1961 census population for Northern Ireland, of 258 (95% confidence interval 236 to 280) per 100 000. Using a similar method to Rothwell and Charlton (British Telecom phone book of the area), 17% of the study population had a surname prefixed with Mc or Mac and it is of note that 22.9% of prevalent cases had such a surname prefix (odds ratio = 1.46, 95% CI 1.09 to 1.93, p<0.009).

Our results support the conclusion of Rothwell and Charlton that Celtic ancestry is a risk factor for multiple sclerosis and confirm the existence of a step in multiple sclerosis prevalence in the British Isles between England/Wales and Scotland/Northern Ireland.

G V MCDONNELL
S A HAWKINS
Northern Ireland Neurology Service, Queen’s Hospital, Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland BT12 6BA, UK


Abendazole therapy for subarachnoid cystercerci: clinical and neuroimaging analysis of 17 patients

By contrast with the weaknesses of anecdotal observations from case series, the power of randomised clinical trials for deciding the benefit of therapy has become increasingly evident and indisputable worldwide. Nowadays, to argue against the validity of this assertion may seem superfluous; however, a recent paper reported by Del Brutto2 regarding treatment in neurocysticercosis ignores basic procedures for well performed clinical trials by inappropriate and misleading methodology to evaluate medical therapy.

By definition, a clinical trial is a prospective study comparing the effect and value of treatment against a control in human subjects. The main drawback of Del Brutto’s report is that it does not include a control group against which the intervention group is compared; therefore, its results are definitely flawed. Additionally, a basic experimental study design requires at least minimal consideration regarding inclusion and exclusion criteria, randomisation, and definitions of response or outcome variables. This information is not provided by Del Brutto’s report; its design fails to protect against potential bias in patient selection or evaluation of outcome. The definition of subarachnoid cystercerci used by Del Brutto was based on “appearance on CT of hypodense cystic lesions located over the cerebral hemispheres, the sylvian fissure, or the CSF cisterns at the base of the brain”. It is well known that there are many other diagnostic possibilities to be considered in the differential diagnosis of subarachnoid hypodense lesions.3,4 Besides, CT is not a reliable procedure for diagnosing subarachnoid cystercerci, as MRI. In fact, we cannot be completely sure, for example, that the CT image shown in the report by Del Brutto correspond to subarachnoid cysterci. If we were to use MRI on this patient, they might correspond to a parenchymal cyst which resolved as a reflection of the natural history of this condition. There is therefore no objective confirmation or rejection of this assertion.

Del Brutto’s report3 maintains that evaluation of the therapeutic response to albendazole included comparison of the size of the cysts as well as clinical evaluation before and after treatment. To consider the size of cysts as a response variable is certainly useless because of the obvious difficulties in measuring cyst size in the subsequent follow up CT. It is also widely accepted that the clinical manifestations of neurocysticercosis are polymorphic, and their clinical course is unpredictable; therefore, the clinical manifestations as an outcome variable is entirely biased. Another personal appreciation of Del Brutto’s10 is that albendazole reaches high concentrations in CSF, and has been used with success in some patients with subarachnoid cysts; nevertheless, studies used as support of the efficacy of albendazole in this condition are not randomised or blinded, having historical control groups or patients who served as their own control, and regarding clinical evaluation as an outcome variable.

Whereas it is generally assumed that albendazole is effective treatment for neurocysticercosis, a critical review of the literature suggests that the studies on which these assumptions are based are defective in terms of patient selection, assignment to treatment, and selection and measurement of outcome variables. Many authors have warned that this therapy in some patients might sometimes be harmful, particularly in the subarachnoidal localisation, because some patients have developed arteritis and hydrocephalus after the administration of antihelmintic drugs.10 According to these authors a parasite may be easily removed surgically even before an inflammatory reaction develops.2 A randomised clinical trial of treatment of neurocysticercosis considers the question of to what extent and in which patients treatment with either praziquantel or albendazole is effective. The improvement attributed to these drugs in several studies may be related to the lack of appropriate controls and is likely to be a reflection of the natural history of the condition. The authors point...
out the need to conduct a long term, placebo controlled trial with precise end points, proper randomisation, sample size calculations, and predetermined statistical calculations, to evaluate properly the effectiveness and determine the indications of aetiological treatment for neurocysticercosis. In the era of evidence-based medicine, we neurologists and general practitioners should be demanding regarding use of sound scientific information with methodological soundness for improving our clinical decision making. Medical information from reports that do not conform to the minimal requirements of a clinical trial should be avoided.

Oscar H Del Brutto
Department of Neurology, Luis Vernaza Hospital, Guayaquil, Ecuador

Correspondence to: Professor Oscar H Del Brutto
University of Cuenca School of Medicine, PO Box 0101–719, Cuenca, Ecuador

The author’s reply: I celebrate the rigid academic standards of Carpio’s medical practice, but wish they were matched with knowledge on the available literature on albenzadozole therapy for neurocysticercosis. That albenzadozole actually has a cysticidal effect is beyond all doubt. The drug has been used to treat patients with neurocysticercosis since 1987, and physicians who are familiar with the disease know that it is effective. Moreover, the single study in which albenzadozole has not been useful for albenzadozole—namely, the parenchymal brain cysticerci—published by Carpio et al—has been questioned due to inadequate recollection of data. In our study, we did not attempt to verify the cysticidal effect of the drug (it has been already demonstrated) but to document if albenzadozole could also be useful in a severe form of neurocysticercosis that has been associated with a grim prognosis. Under these circumstances, it is not ethical to deprive a group of patients of a safe and inexpensive treatment just for the sake of science. In addition, Carpio’s concerns about the criteria we used for the diagnosis of subarachnoidal cysticerci are typical of those who are not familiar with the disease. The problem with CT is that this imaging method may misdiagnose some subarachnoidal cysts as parenchymal cysts, but the opposite is not true.

As a physician interested in the advancement of science, I applaud Carpio’s interest in evidence-based medicine but I completely disagree with him in that information from reports other than clinical trials should be avoided. He must remember that outstanding contributions to medical knowledge have been made through single case reports, small clinical series, and open trials. On the contrary, the so-called “observational” has been the shield of major medical frauds. Medicine is art and science, and wise physicians know that information from clinical findings actually have a “significant” impact on everyday clinical practice.

BOOK REVIEWS


Ever since the landmark overview “Do stroke units save lives?” the momentum behind the organisation of stroke sevices has inexorably increased. Within this concise paperback of seven chapters and 112 pages, written in the main by Langhorne and Dennis on behalf of the Stroke Unit Trialists Collaboration, lies a detailed, evidence-based, and critical summary of the arguments for stroke units. The authors lead the reader in a logical fashion through the steps necessary to critically appraise and assimilate available evidence into a systematic review. Basic but often overlooked general principles such as sources of bias are discussed in detail as well as matters relating more specifically to stroke such as outcome measurement. Particularly helpful are the chapters on the economics of stroke units and the implications for service planning in which the available evidence has been used to suggest how and at what cost (in fact an overall saving) stroke units might be developed. This comprehensively referenced book will be read by members of all disciplines involved in stroke care. If I was about to ask for funding for a stroke unit I would certainly have it in my pocket!

Peter Martin


There are two parallel strands to the development of our understanding of immune mediated disorders of peripheral nerve. The first grew from the demonstration in the 1950s, by Waksman and Adams, that rabbits immunised with homologous sciatic nerve and adjuvant developed an inflammatory demyelinating neuopathy. In this model, experimental allergic neuritis, the CSF characteristically shows a raised protein concentration and a paucity of cells. These findings replicated those of Guillain-Barré and Stohl on the CSF abnormalities of Landry’s disease and so spawned the notion that Guillain-Barré syndrome was immunologically mediated. Accordingly, over the past 20 years patients with Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy have been exposed to immunosuppressive regimes borrowed from other inflammatory disorders. The second important development has been the growing understanding of the relation between plasma cell dyscrasias and peripheral neuropathies. The association of peripheral neuropathy and myeloma was noted in the 1930s and that with an IgM monoclonal gammopathy was reported in the 1960s. Twenty years later IgM antibodies were found that were directed against myelin associated glycoprotein. This work has gathered pace and over the past 10 years, peripheral neuropathies have been described in association with specific angiotensin and antiphospholipid antibodies. Alongside this expansion of interest in the immunology of peripheral nerve disorders, new infective neuropathies have emerged such as those due to HIV and Lyme disease, first recognised in 1993. It is an appropriate time to review the book by LaToV and colleagues. The scope of the book is wide, including scientific overviews of immune interactions in the peripheral nervous system as well as pragmatic accounts of the use of immunosuppressant drugs and the management of neuropathic pain. The inflammatory CNS demyelinating disorders and antibody associated neuropathies are comprehensively surveyed, as well as more difficult entities such as the post-polio syndrome and the rare toxic inflammatory neuropathies. The dry review of silicone neureotoxicity by Rosenberg is a special treat. British readers may be surprised to find only one United Kingdom contributor to this American-Dutch edited text, whereas 18 authors are American, 11 are from The Netherlands, two each from Italy, Japan, and Israel, and one each from Canada, Nepal, and Switzerland. It is not cheap, but it has no equal as a comprehensive, accessible, and useful resource for the practising neurologist.

Alasdair Coles

Downloaded from http://jnnp.bmj.com/ on October 9, 2016 - Published by group.bmj.com

This is a handsome and liberally illustrated guide to the success and frozen section diagnosis in neuropathology. This aspect of practice remains a central part of a clinical neuropathologist’s role and this book can be recommended to trainees and practitioners for its wealth of illus-1

*Pathology.*


This is a handsome and liberally illustrated guide to the success and frozen section diagnosis in neuropathology. This aspect of practice remains a central part of a clinical neuropathologist’s role and this book can be recommended to trainees and practitioners for its wealth of illus-1

*Pathology.*


...
Creutzfeldt-Jakob disease presenting as complex partial status epilepticus: a report of two cases

J H REES, S J SMITH, D M KULLMANN, N P HIRSCH and R S HOWARD

doi: 10.1136/jnnp.66.3.406

Updated information and services can be found at:
http://jnnp.bmj.com/content/66/3/406

These include:

References
This article cites 1 articles, 1 of which you can access for free at:
http://jnnp.bmj.com/content/66/3/406#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/