Article Text

Download PDFPDF
Ultrasonic evaluation of pathological brain perfusion in acute stroke using second harmonic imaging
  1. J Federleina,
  2. Th Posterta,
  3. S Mevesa,
  4. S Weberb,
  5. H Przunteka,
  6. Th Büttnera
  1. aDepartment of Neurology, St Josef Hospital, Ruhr-University of Bochum, Gudrunstrasse 56, D-44791 Bochum, Germany, bSchering AG Berlin, Germany
  1. Dr Jens FederleinJens.Federlein{at}ruhr-uni-bochum.de

Abstract

OBJECTIVE To evaluate the use of transient response second harmonic imaging (HI) by means of ultrasound to assess abnormalities of cerebral echo contrast agent enhancement in patients with acute stroke.

METHODS The study comprised 25 patients with acute onset of hemispheric stroke (<24 h) with sufficient insonation conditions and 14 control subjects without cerebrovascular disease. All stroke patients had HI, extracranial and transcranial colour coded duplex examinations of the arteries supplying the brain, and clinical examinations (European stroke scale) performed in the acute phase, on day 2, and within 1 week. Acute CT was repeated within 1 week and facultatively accompanied by angiography. Examinations using HI were performed in an axial diencephalic plane of section using the transtemporal acoustic bone window. After bolus application of galactose based microbubbles, 61 ultrasound images with a cardiac cycling triggering frequency of once every 2 seconds were recorded and evaluated off line. Focal perfusion deficit was identified if no contrast enhancement was visualised in a circumscribed region of interest and insufficient temporal bone window was excluded. In cases of reappearance of contrast enhancement reperfusion was assessed.

RESULTS Adequate cerebral contrast enhancement could be seen in 21 subjects. In seven, a large hemispheric deficit of contrast enhancement affecting the entire middle cerebral artery (MCA) territory was detectable; the lentiform nucleus was affected in three subjects. Assessment of cerebral contrast abnormalities was possible in two patients with superficial MCA infarctions but in none of the patients with lacunar ischaemias. None of the control persons had focal deficits of cerebral echo contrast enhancement. In all patients with complete MCA infarction and striatocapsular infarction, presumed ischaemic areas in HI examinations correlated with final CT findings. Overall sensitivity and specifity of HI examinations for predicting size and localisation of the infarction were 75 and 100%, respectively. During follow up, reappearance of contrast enhancement was determined in three patients, in two patients circulatory arrest due to malignant brain oedema with missing contrast enhancement in the entire cerebral hemisphere could be seen. Extent of contrast enhancement deficits significantly correlated with the clinical status on admission and after 1 week (p<0.01).

CONCLUSIONS Second harmonic imaging is the first ultrasonic technique that enables visualisation of pathological cerebral echo contrast enhancement. Because this method identifies deficits of focal contrast enhancement in patients with acute stroke and allows estimation of the final infarct size and clinical prognosis, it may help to select and monitor patients for invasive therapies.

  • transcranial sonography
  • contrast media
  • harmonic imaging

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes