Magnetic resonance brain imaging in patients with acute stroke: feasibility and patient related difficulties

P J Hand, J M Wardlaw, A M Rowat, J A Haisma, R I Lindley, M S Dennis

Magnetic resonance imaging (MRI) has been advocated as a method of improving the selection of patients with stroke for thrombolysis. However, MRI has more contraindications, is more difficult to perform in ill patients, and takes longer than computed tomography scanning.

The current issue is to determine the proportion of patients with acute stroke in whom MRI is achievable, and how to identify (in the acute situation) those in whom MRI is unlikely to be successful. Studies of imaging appearances in selected patients, or which were retrospective but gave no indication of the actual number of suspected strokes not referred for MRI in the same time period, have not provided such information. One recent prospective study found that 20% of 144 stroke patients recruited “at the hospital door” could not have MRI (of whom half had MRI contraindications and half were medically unstable). No study has investigated whether MRI is safe in acute stroke.

We aimed to determine: (1) whether it was possible to use MRI as the first line assessment for all suspected acute strokes, and (2) the limitations and safety of MRI in acute stroke.

METHODS

From among all consecutive admissions to our hospital (population served, 500 000) with suspected acute stroke, patients were eligible for the MRI feasibility study if they could be assessed by a clinical research fellow and scanned within 24 hours of stroke, and the clinical diagnosis was probable or definite stroke (transient ischaemic attacks and obvious non-strokes were excluded).

We recorded time of stroke and assessment, clinical features, neurological deficit (National Institutes of Health Stroke Scale Score (NIHSS): http://www.strokecenter.org/trials/scales/) and stroke subtype. An experienced neurologist assessed the risk of complications occurring during MRI. We noted whether x rays were required to exclude metal.

All reasons for not performing MRI were recorded. Patients were scanned on a 1.5 T GE Signa Echoplanar MRI scanner, providing virtually unrestricted access for stroke during normal working hours, with: gradient echo, diffusion weighted imaging (three orthogonal gradients), perfusion imaging (dynamic bolus tracking with 20 ml gadolinium), and T2 axial images (12 minutes of imaging time).

During MRI, we attempted to recorded pulse and arterial oxygen saturation (SaO2) every five minutes (1997) and SPSS for Windows (version 10.0.5; SPSS Inc, 1999).

RESULTS

Among all patients admitted with suspected stroke (n = 336) in nine months, 138 presentations by 136 patients were recruited to the MRI feasibility study (two patients presented twice). The major reasons for non-recruitment from all suspected stroke (n = 336) to the MRI study (n = 136) were (1) patient arrived too late or the research fellow was busy with other patients (not included: median, 26 hours; interquartile range, 13–51; included: median, eight hours; interquartile range, 3–19), or (2) clinical diagnosis not definite or probable stroke (n = 116). Other patient characteristics for the MRI study sample were very similar to all hospital admitted patients with stroke.

Of 138 MRI study eligible patients, 53 (38%) could not be scanned (fig 1). Patients not scanned were significantly older (median age, 77 v 74 years; oldest patient, 97 v 99: p = 0.03), had more severe strokes (median NIHSS 11 v 5: p = 0.03), and were more often drowsy (57% v 32%: p = 0.007) than those who were scanned.

Abbreviations: MRI, magnetic resonance imaging; NIHSS, National Institutes of Health Stroke Scale Score; SaO2, arterial oxygen saturation.
Patient related factors were the most common reason for not scanning (fig 1): 15 of 53 (11.0% of the whole MRI study). These factors included being too young to lie flat and cooperate, low Glasgow Coma Score, acute pulmonary oedema with oxygen saturation of 60% despite oxygen treatment, rapid symptom resolution (transient ischaemic attack), MRI contraindications (pacemaker, four; recent surgery with metal suture, one; prosthetic mitral valve of uncertain type, one), and claustrophobia (three). Organisational factors affected 14 patients: scanner non-availability (9, outside working hours or service days) and fast tracked to computed tomography for thrombolysis because the wait for MRI was too long (four). Orbit x rays to exclude ocular metal added 20–30 minutes of delay in 13% of patients (all normal).

Twenty four patients could not be monitored in MRI (table 1): confused or aphasic patients had difficulty retaining the finger probe, or the signal was weak (irregular pulse, poor tissue perfusion). Non-monitored patients were non-significantly more likely to have a higher NIHSS, be more confused or drowsy, and were far more likely to become hypoxic than those not requiring intervention.

Eleven of the 61 patients monitored became hypoxic during MRI (median SaO2 96.5% and start of MRI 94%; p = NS; χ²). Those patients who would become hypoxic (11 of the 61 patients who we could monitor) could not be predicted from the control room. Patients with severe strokes, frequently detected hypoxia and patient distress, not apparent from the control room. With more clinicians and 24 hour scanner availability (organisational factors) we could have scanned up to 85% (62%). With more clinicians and 24 hour scanner availability (organisational factors) we could have scanned up to 85%; that is, 13% more patients. However, the major reason for not scanning was the patients’ medical instability. A shorter scanning protocol could improve tolerance, but most of the median 25 minutes of “scanning time” was not image acquisition, but settling/reassuring/managing the patient.

Is MRI in acute stroke safe? The observers in the MRI room frequently detected hypoxia and patient distress, not apparent from the control room. Patients with severe strokes, reduced conscious level, or coexisting medical problems who had greatest need of monitoring were most difficult to monitor. Those patients who would become hypoxic (11 of the 61 patients who we could monitor) could not be predicted beforehand. Those judged to be at “low risk” of difficulties during scanning were twice as likely to become hypoxic than those at “high risk”, and worryingly, there may have been even more hypoxic episodes among those with more severe strokes whom we could not monitor.

Table 1 Features of those patients undergoing MRI (n = 85): patients who had SaO2 monitoring versus those in whom monitoring was not possible

<table>
<thead>
<tr>
<th>Feature</th>
<th>SaO2 recordings possible (n = 61)</th>
<th>No SaO2 recordings possible (n = 24)</th>
<th>p Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (IQR)</td>
<td>73 years (61–82)</td>
<td>77 years (71–81)</td>
<td>0.441</td>
</tr>
<tr>
<td>Irregular pulse</td>
<td>13 22%</td>
<td>6 26%</td>
<td>0.725</td>
</tr>
<tr>
<td>Confusion</td>
<td>10 24%</td>
<td>5 36%</td>
<td>0.411</td>
</tr>
<tr>
<td>Decreased conscious level</td>
<td>11 18%</td>
<td>5 21%</td>
<td>0.766</td>
</tr>
<tr>
<td>Aphasia</td>
<td>18 30%</td>
<td>7 30%</td>
<td>0.975</td>
</tr>
<tr>
<td>Median NIHSS (IQR)</td>
<td>5.0 3–9</td>
<td>6.0 4–9</td>
<td>0.356</td>
</tr>
<tr>
<td>TACS</td>
<td>9 15%</td>
<td>3 13%</td>
<td>0.788</td>
</tr>
<tr>
<td>Median scan time (IQR)</td>
<td>27 min 20–42</td>
<td>21 min 16–30</td>
<td>0.026</td>
</tr>
<tr>
<td>Median SaO2 in ARU (IQR)</td>
<td>97% 95–98</td>
<td>96% 95–98</td>
<td>0.542</td>
</tr>
</tbody>
</table>

*Determined by Mann-Whitney U test (for continuous variables) and χ² test (for categorical variables).

ARU, acute respiratory unit; IQR, interquartile range; MRI, magnetic resonance imaging; NIHSS, National Institutes of Health Stroke Scale Score; SaO2, arterial oxygen saturation; TACS, total anterior circulation syndrome.
Few previous studies gave details of patient inclusions and exclusions, and none provided patient tolerability or safety data. Small sample sizes—for example, 64 patients over two years from 1200 patients admitted each year (<3% were scanned),6 or 66 of 347 patients scanned over a five year period6 suggest similar difficulties. The only other study prospectively recruiting “at the hospital door” had very similar results to ours: 20% of 144 patients could not undergo MRI because of MRI contraindications (half) or medical factors (half).3 More of our patients were claustrophobic (9.4%; 95% confidence interval, 5.6% to 15.5%) than in other, less acute stroke studies.3–12

In conclusion, there are potential risks of early MRI. Researchers seeing younger, more medically stable patients with stroke may be less aware of this. Because stroke predominantly affects the elderly, and the average age is rising,13 it is important to assess imaging in a representative sample. Lying supine for up to 25 minutes increases the risk of aspiration, yet patient observation is difficult, and monitoring may not work in those at greatest risk of complications. In acute stroke, nearly 20% of patients may desaturate to 90% SaO2 or less, 33% may require some intervention, and 20% may not complete the full MRI sequence. Hypoxia could not be predicted. Physicians managing acute stroke need to be aware of this, particularly as MRI availability for stroke increases. It would be unfortunate if, in striving for greater diagnostic certainty with MRI, physicians inadvertently lost valuable time in hyper-acute stroke through lack of awareness of these practical limitations and increased the risk of penumbral damage from hypoxia. Trained personnel should be with the patient during scanning. Further research should investigate the balance of information gained versus the safety and practicality of MRI.

ACKNOWLEDGEMENTS
Funding by the Scottish Executive Chief Scientist’s Office (reference number CZB/4/14); the Health Foundation (reference number 2268/1114); the SHEFC Brain Imaging Research Centre for Scotland (www.dcn.ed.ac.uk/bic).

Authors’ affiliations
J M Wardlaw, A M Rowat, M S Dennis, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK

P J Hand, RMH Stroke Centre, Department of Neurology, Royal Melbourne Hospital, Victoria, Australia 3050
J A Haisma, Department of Rehabilitation Medicine, Erasmus Medical Centre, Postbus 2040, 3000 CA Rotterdam, The Netherlands
R I Lindley, Department of Geriatric Medicine, Westmead Hospital, Western Clinical School (C24), University of Sydney, Westmead, NSW 2006, Australia

Competing interests: none declared

Ethics and consent: The study was approved by the Lothian research ethics committee reference number LREC/1702/98/4/1, the regional committee for single centre research conducted in Lothian Region. Consent to participate in the study was obtained from the patient, or assent from a relative, as approved by the ethics committee.

REFERENCES
Magnetic resonance brain imaging in patients with acute stroke: feasibility and patient related difficulties

P J Hand, J M Wardlaw, A M Rowat, J A Haisma, R I Lindley and M S Dennis

*J Neurol Neurosurg Psychiatry* 2005 76: 1525-1527
doi: 10.1136/jnnp.2005.062539

Updated information and services can be found at:
http://jnnp.bmj.com/content/76/11/1525

These include:

**References**
This article cites 12 articles, 3 of which you can access for free at:
http://jnnp.bmj.com/content/76/11/1525#BIBL

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Topic Collections**
Articles on similar topics can be found in the following collections

- Stroke (1414)
- Radiology (1688)
- Radiology (diagnostics) (1272)
- Neuroimaging (378)

**Notes**

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/