Gamma knife treatment for refractory cluster headache: prospective open trial

A Donnet, D Valade, J Régis

Background: Since the initial report of Ford et al in 1998 no further study has evaluated radiosurgery of the trigeminal nerve in chronic cluster headache (CCH).

Methods: We carried out a prospective open trial of radiosurgery and enrolled 10 patients (nine men, one woman; mean age 49.8 years, range 32–77) presenting with severe and drug resistant CCH (mean duration 9 years, range 2–33). The cisternal segment of the nerve was targeted with a single 4 mm collimator (80–85 Gy max).

Results: The mean follow up was 13.2 months. No improvement was observed in two patients and three patients had no further attacks. Three patients showed dramatic improvement with a few attacks per month or very few attacks over the last six months. Two patients were pain free for only one and two weeks and their headaches recurred with the same severity as before. Three patients developed paraesthesia with no hypoaesthesia, one developed hypoaesthesia, and one developed deafferentation pain.

Conclusions: The rate and severity of trigeminal nerve injury appeared to be significantly higher than in trigeminal neuralgia, and this study does not support the positive results of the study of Ford et al. We consider the morbidity to be significant for the low rate of pain cessation, making this procedure less attractive even for the more severely affected subgroup of patients.

PATIENTS AND METHOD

We carried out a multicentre (Marseille and Paris), prospective, non-blinded open trial of radiosurgery without clinical controls. Between January 2002 and February 2003, 10 patients (nine men, one woman) presenting with very severe and drug resistant CCH were enrolled. The candidates for gamma knife surgery were selected according to the following criteria: (a) the patient met the criteria of CCH as defined by the International Headache Society classification and (b) failure of appropriate drug treatment including verapamil (480–1200 mg per day) and lithium. Medical treatment was perceived to have failed on the basis that the physician administered optimal medications at high therapeutic serum concentrations. Previous prophylactic treatments are summarised in table 1. At the time of this data collection, the role of antiepileptic drugs in the treatment of CCH was not clearly defined. However, there are no established guidelines for medically intractable CCH.

The protocol of the prospective trial was submitted to the ethics committee and to the health authorities and modified according to their recommendations. An information brochure and explanation of the procedure was given to the patient and informed consent obtained. This was signed by the patient and the investigator. The experimental nature of the procedure was extensively explained. The specific risk of failure or side effects and especially the risk of hypoaesthesia and deafferentation pain was explained to the patients.

The patients were admitted to the Marseille Timone University Hospital the day before radiosurgery and discharged the day after (two nights). The frame was applied under local anaesthesia after administration of mild sedative medication. The frame was placed so that the base ring of the frame was parallel to the trigeminal nerve axis.

Preoperative stereotactic imaging systematically included magnetic resonance (MR) and computed tomography (CT).

Abbreviation: CCH, chronic cluster headache
scans. The MR (Siemens 1.5 Tesla) sequences included a T2 high resolution (0.5 mm) three dimensional acquisition (CISS; constructive interference study) state sequence from Siemens) acquired in the axial plan and a three dimensional T1 acquisition (MPR) 1.5 mm thick. CT scan bone window acquisition served as part of the quality control to check and eventually correct the distortion of the MR images.19 The cisternal segment of the nerve (defined as the part between Meckel’s cave and the pons) was targeted with a single 4 mm collimator. The target used in this study was exactly the same as the one we are using for essential trigeminal neuralgia—collimator. The target used in this study was exactly the same cisternal segment of the nerve (defined as the part between which technique led to complete relief.

Three patients showed dramatic improvement with a few attacks per month or very few attacks over the last six months (patients 2, 5, and 6). We considered their results good, and they continued to use preventive medications. Three patients had immediate relief of CCH or were free of attacks within a week following gamma knife surgery. There is no explanation for this and was also reported by Ford et al.16

Two patients were pain free for only one and two weeks and had recurrence of cluster headache with the same severity and frequency as before (patients 1 and 4). No improvement was observed in two patients (failures; patients 7 and 8).

No patient sustained an immediate complication after the gamma knife procedure. Three patients developed paraesthesia with no hypoesthesia, one developed hypoesthesia, and one developed deafferentation pain. The severity of the deafferentation pain in this last patient (patient 1) led us to perform a cortical stimulation.

DISCUSSION

Chronic cluster headache is the most severe primary headache syndrome known. Improvement has been reported with surgical procedures classically proposed for trigeminal neuralgia,2 although with a low rate of pain cessation and a high rate of nerve damage. The pain and attacks of cluster headache might originate in or are mediated to a number of different sites: the regional orbital, internal or external carotid circulation, the cavernous sinus, the trigeminal vascular nervous connections, the sympathetic and parasympathetic nerves, and the hypothalamic centres (for review see references 13, 14).

The exact aetiology and pathophysiology of cluster headache is yet to be fully elucidated. However, this syndrome has three major features: trigeminal distribution of the pain, accompanying ipsilateral symptoms of autonomic dysfunction, and episodic pattern of the attacks. First, the cluster headache pain is localised to the distribution area of the ophthalmic division of the trigeminal nerve, with the maximum pain invariably centred in or around the eye or forehead. The pain threshold is reduced within this area during the cluster headache periods. It is logical to assume that facial pain must reach the central nervous system through the trigeminal sensory nerve fibres and that, just as in trigeminal neuralgia, interruption of some part of the trigeminal system may prevent the painful impulses reaching the pons.

Secondly, the ipsilateral autonomic features reflect parasympathetic dysfunction. The parasympathetic fibres arise from

Table 1 Details of patients with chronic cluster headache enrolled in the present study

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Sex</th>
<th>Chronic since</th>
<th>No. of attacks/day</th>
<th>Failed prophylactic treatment</th>
<th>Date of gamma knife surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47</td>
<td>M</td>
<td>1985</td>
<td>1</td>
<td>Verapamil (840 mg/d); clonopamine (125 mg/d); amitriptyline (100 mg/d); gabapentin (3600 mg/d); valproate (1 g/d); indometacin (150 mg/d); methysergide (4.95 mg/d); baclofen (75 mg/d)</td>
<td>02/01/02</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>M</td>
<td>1992</td>
<td>5–6</td>
<td>Verapamil (720 mg/d); lithium (750 mg/d); methysergide (4.95 mg/d); indometacin (200 mg/d); propranolol (80 mg/d); baclofen (75 mg/d)</td>
<td>05/02/02</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>M</td>
<td>2000</td>
<td>2</td>
<td>Verapamil (720 mg/d); lithium (750 mg/d); methysergide (4.95 mg/d); indometacin (200 mg/d); propranolol (120 mg/d); two occipital nerve blockades: 1996 and 1999</td>
<td>06/06/02</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>M</td>
<td>2000</td>
<td>1</td>
<td>Verapamil (600 mg/d); lithium (750 mg/d); amitriptyline (100 mg/d); clonopamine (75 mg/d); valproate (1 g/d); successful but parasthesia; topiramate (100 mg/d); adverse effects ++; gabapentin (1.2 g/d)</td>
<td>27/06/02</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td>M</td>
<td>2000</td>
<td>1</td>
<td>Verapamil (720 mg/d); lithium (750 mg/d); methysergide (4.95 mg/d); indometacin (200 mg/d); propranolol (120 mg/d)</td>
<td>05/02/02</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>M</td>
<td>2002</td>
<td>3</td>
<td>Verapamil (960 mg/d); lithium (750 mg/d); methysergide (4.95 mg/d); indometacin (200 mg/d)</td>
<td>17/10/02</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>M</td>
<td>1998</td>
<td>2</td>
<td>Verapamil (720 mg/d); lithium (750 mg/d); valproate (1.5 g/d); indometacin (200 mg/d); propranolol (160 mg/d)</td>
<td>05/11/02</td>
</tr>
<tr>
<td>8</td>
<td>77</td>
<td>F</td>
<td>1970</td>
<td>1</td>
<td>Verapamil (960 mg/d); lithium (750 mg/d); topiramate (150 mg/d); methysergide (4.95 mg/d); indometacin (200 mg/d)</td>
<td>21/01/03</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>M</td>
<td>2000</td>
<td>6</td>
<td>Verapamil (720 mg/d); lithium (750 mg/d); valproate (1.5 g/d); occipital nerve blockade: 2001</td>
<td>18/02/03</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>M</td>
<td>1995</td>
<td>5</td>
<td>Verapamil (720 mg/d); lithium (750 mg/d); methysergide (4.95 mg/d); indometacin (200 mg/d); two occipital nerve blockades: 1999 and 2000</td>
<td>25/02/03</td>
</tr>
</tbody>
</table>

the superior salivatory nucleus, exit the brain stem via the nervus intermedius and may also run in the seventh or eighth cranial nerves. Finally, the episodic and often time related consistency and seasonal predilection of attacks may be situated in the hypothalamus. In fact procedures targeting the superior salivatory nucleus, exit the brain stem via the nervus intermedius, glycerol rhizotomy, radiofrequency (RF) rhizotomy in the gasserian ganglion, root section of the trigeminal nerve situated in the hypothalamus. In fact procedures targeting the superior salivatory nucleus, exit the brain stem via the nervus intermedius, glycerol rhizotomy, radiofrequency (RF) rhizotomy in the gasserian ganglion, root section of the trigeminal nerve situated in the hypothalamus.

Gamma knife radiosurgery is now a part of the available armamentarium for surgical therapy of essential trigeminal neuralgia. More recently this technique has been used in CCH, targeting the trigeminal root entry zone in the pons. In this series, four men and two women with refractory CCH were treated with a dose of 70 Gy to the isocentre. Four of the six patients experienced excellent relief (defined as free from cluster headaches with minimal or no medication). One patient had good relief and the final patient’s result was judged to be fair. No serious side effects were reported, however, the long term benefits were not evaluated in this study.

Among the proposed neurosurgical techniques, thermo-coagulation of the trigeminal nerve or of the sphenopalatine ganglion and microvascular decompression have recently been re-evaluated. In 1997, Sanders and Zuurmond reported a series of 66 patients with refractory cluster headache treated with sphenopalatine ganglion blockade. Of these only 10 had CCH (and 56 episodic) and complete pain relief was obtained in three of these patients (partial relief in three). In 1995, Taha and Tew reported a series of seven patients with refractory CCH treated with RF rhizotomy. All the patients were reported to be pain free immediately after the procedure but at last follow up (median follow up five years; range 2–20 years) only two were still pain free (at seven and 20 years), and three had mild recurrence with good drug sensitivity. These authors reported one patient with complications (transient diplopia and keratitis). Two other series of patients who underwent trigeminal nerve root section confirmed that this procedure is an effective treatment with acceptable morbidity. Finally, Lovely et al. reported a series of 20 patients with CCH who underwent microvascular decompression of the trigeminal nerve alone (n = 9), or with microvascular decompression of the nervus intermedius (n = 3), or with sectioning of the nervus intermedius (n = 10). At the last follow up more than 90% reduction in pain was achieved in 45% of patients (nine patients) and more than 50% reduction in pain in six patients. Complications included one infected cranioplasty requiring removal, one cerebrospinal fluid leak requiring spinal drainage, seven patients with headache requiring a lumbar puncture, but no hearing loss or facial palsy was reported.

Our experience with radiosurgery does not compare very favourably with the results of these series. However, due to the frequency of recurrences, irrespective of the technique used, other options should not be neglected. In our study of gamma knife surgery for trigeminal neuralgia (276 procedures) in spite of the use of the same target and a similar dose, hypoaesthesia remained rare (n = 16; 5.8%), and we did not encounter severe hypoaesthesia associated with iatrogenic deafferentation pain (data under publication). Several hypotheses may be advanced to explain this intriguing discrepancy. Perhaps in patients with trigeminal neuralgia and structural alteration in the fifth cranial nerves this nerve is more resistant to radiosurgery. An alternative hypothesis may be an abnormal sensitivity of the nerve in CCH.

The rather high morbidity and low efficacy of radiosurgery directed towards the trigeminal nerve (at least in our hands) indicate that new therapeutic options should be explored. The first published results of posterior hypothalamic stimulation are encouraging. A few authors have proposed directing radiosurgery towards the sphenopalatine ganglion or both the sphenopalatine ganglion and the trigeminal nerve (Delobinière, personal communication).

CONCLUSION

This first prospective evaluation of gamma knife surgery for cluster headache showed that complete pain cessation can be obtained over a significant period of time. However, long term evaluation is necessary. Our study does not support the positive results of the study of Ford et al. The rate and severity of trigeminal nerve injury appear to be significantly higher than in trigeminal neuralgia. We consider the
morbidity to be significant for a low rate of pain cessation making this procedure less attractive even for the more severely affected subgroup of patients. Our group is evaluating other approaches. Moreover, we propose that recommendations for the criteria of medically intractable cluster headache, such as those developed for medically intractable epilepsy, are necessary. The role of the new antiepileptic drugs, in particular topiramate, in CCH has to be clarified.

Authors’ affiliations
A Donnet, Service de Neurochirurgie, Hôpital la Timone, Marseille, France
D Valade, Centre d’Urgence Céphalée, Hôpital Lariboisière, Paris, France
J Régis, Service de Neurochirurgie Fonctionnelle and Stéréotaxique, Hôpital la Timone, Marseille, France

Competing interests: none declared

References
8 Matharu MS, Goodbody PJ. Persistence of attacks of cluster headache after trigeminal nerve root section. Brain 2002;125(Pt 5):976–84.
12 Regis J. High-dose trigeminal neuralgia radiosurgery associated with increased risk of trigeminal nerve dysfunction. Neurosurgery 2002;50:1401–2; author’s reply 1402–3.
Gamma knife treatment for refractory cluster headache: prospective open trial

A Donnet, D Valade and J Régis

J Neurol Neurosurg Psychiatry 2005 76: 218-221
doi: 10.1136/jnnp.2004.041202