J Neurol Neurosurg Psychiatry 85:431-434 doi:10.1136/jnnp-2013-304920
  • Cerebrovascular disease
  • Research paper

An early prediction of delirium in the acute phase after stroke

  1. G Roks2
  1. 1Department of Intensive Care Medicine, St Elisabeth Hospital, Tilburg, The Netherlands
  2. 2Department of Neurology, St Elisabeth Hospital, Tilburg, The Netherlands
  3. 3Department of Psychiatry, St Elisabeth Hospital, Tilburg, The Netherlands
  4. 4Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
  5. 5Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands
  1. Correspondence to A W Oldenbeuving, Department of Intensive Care, St Elisabeth Hospital, P.O. Box 90151, Tilburg 5000 LC, The Netherlands;
  • Received 9 January 2013
  • Revised 12 April 2013
  • Accepted 14 April 2013
  • Published Online First 6 June 2013


Background We developed and validated a risk score to predict delirium after stroke which was derived from our prospective cohort study where several risk factors were identified.

Methods Using the β coefficients from the logistic regression model, we allocated a score to values of the risk factors. In the first model, stroke severity, stroke subtype, infection, stroke localisation, pre-existent cognitive decline and age were included. The second model included age, stroke severity, stroke subtype and infection. A third model only included age and stroke severity. The risk score was validated in an independent dataset.

Results The area under the curve (AUC) of the first model was 0.85 (sensitivity 86%, specificity 74%). In the second model, the AUC was 0.84 (sensitivity 80%, specificity 75%). The third model had an AUC of 0.80 (sensitivity 79%, specificity 73%). In the validation set, model 1 had an AUC of 0.83 (sensitivity 78%, specificity 77%). The second had an AUC of 0.83 (sensitivity 76%, specificity 81%). The third model gave an AUC of 0.82 (sensitivity of 73%, specificity 75%). We conclude that model 2 is easy to use in clinical practice and slightly better than model 3 and, therefore, was used to create risk tables to use as a tool in clinical practice.

Conclusions A model including age, stroke severity, stroke subtype and infection can be used to identify patients who have a high risk to develop delirium in the early phase of stroke.

Visit the full archive of podcasts for JNNP here >>

Free sample
This recent issue is free to all users to allow everyone the opportunity to see the full scope and typical content of JNNP.
View free sample issue >>

Don't forget to sign up for content alerts so you keep up to date with all the articles as they are published.

Navigate This Article