Article Text

PDF
Research paper
An early prediction of delirium in the acute phase after stroke
  1. A W Oldenbeuving1,
  2. P L M de Kort2,
  3. J F van Eck van der Sluijs3,
  4. L J Kappelle4,5,
  5. G Roks2
  1. 1Department of Intensive Care Medicine, St Elisabeth Hospital, Tilburg, The Netherlands
  2. 2Department of Neurology, St Elisabeth Hospital, Tilburg, The Netherlands
  3. 3Department of Psychiatry, St Elisabeth Hospital, Tilburg, The Netherlands
  4. 4Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
  5. 5Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands
  1. Correspondence to A W Oldenbeuving, Department of Intensive Care, St Elisabeth Hospital, P.O. Box 90151, Tilburg 5000 LC, The Netherlands; a.oldenbeuving@elisabeth.nl

Abstract

Background We developed and validated a risk score to predict delirium after stroke which was derived from our prospective cohort study where several risk factors were identified.

Methods Using the β coefficients from the logistic regression model, we allocated a score to values of the risk factors. In the first model, stroke severity, stroke subtype, infection, stroke localisation, pre-existent cognitive decline and age were included. The second model included age, stroke severity, stroke subtype and infection. A third model only included age and stroke severity. The risk score was validated in an independent dataset.

Results The area under the curve (AUC) of the first model was 0.85 (sensitivity 86%, specificity 74%). In the second model, the AUC was 0.84 (sensitivity 80%, specificity 75%). The third model had an AUC of 0.80 (sensitivity 79%, specificity 73%). In the validation set, model 1 had an AUC of 0.83 (sensitivity 78%, specificity 77%). The second had an AUC of 0.83 (sensitivity 76%, specificity 81%). The third model gave an AUC of 0.82 (sensitivity of 73%, specificity 75%). We conclude that model 2 is easy to use in clinical practice and slightly better than model 3 and, therefore, was used to create risk tables to use as a tool in clinical practice.

Conclusions A model including age, stroke severity, stroke subtype and infection can be used to identify patients who have a high risk to develop delirium in the early phase of stroke.

  • STROKE
  • COGNITION
  • NEUROPSYCHOLOGY

Statistics from Altmetric.com

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Linked Articles

  • Editorial commentary
    Stephen D J Makin Joanna Wardlaw