Article Text

PDF
B31 Striatal Deregulation Of Cdk5 Alters Mitochondrial Dynamics In Huntington’s Disease
  1. M Cherubini1,2,3,
  2. M Puigdellívol1,2,3,
  3. J Alberch1,2,3,
  4. S Ginés1,2,3
  1. 1Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
  2. 2Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
  3. 3Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Spain

Abstract

Huntington’s disease (HD) is characterised by motor disturbances associated to dysfunction and degeneration of the medium spiny neurons within the striatum.1,2The molecular mechanisms underlying striatal vulnerability are still unknown, but growing evidences suggest that mitochondrial dysfunction occurs during the pathogenesis of the disease.3We previously described that deregulation of cyclin-dependent kinase 5 (Cdk5) activity induced by mutant huntingtin increases the susceptibility of striatal neurons to dopamine via D1 receptor activation.4Interestingly, Cdk5 has been shown to act as a mitochondrial regulator during neuronal apoptosis.5

Here, we investigated whether this aberrant Cdk5 signalling contributes to the striatal neurodegeneration by altering mitochondrial dynamics processes. We first observed that striatal cells expressing mutant huntingtin (mHtt) present increased mitochondrial fragmentation that worsens after dopaminergic stimuli. These mitochondrial defects can be widely rescued by Cdk5 inhibition with roscovitine or Cdk5 knockdown with siRNA transfection. Furthermore we found that mHtt deregulates the levels and the subcellular distribution of fission/fusion proteins while activation of D1 receptors promotes an increase in the levels of the fission protein Drp1 and its translocation to the mitochondria. We demonstrated that mHtt-induced Cdk5 activation is involved in the deregulation of the Drp1 GTPase activity since its inhibition prevents the aberrant activation of this fission protein.

Altogether, our findings support the hypothesis that Cdk5 plays a crucial role in mitochondrial defects involved in the striatal neurodegeneration in HD.

This study was supported by Ministerio de Innovación y Ciencia SAF2012–39142, CHDI Ministerio deSanidad y Consumo (CIBERNED CB06/05/0054), Fundación Ramón Areces.

References 1Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EPJr. Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol. 1987;46:12–27

2Myers RH, Vonsattle JP, Stevens TJ, Cupples LA, Richardson EP, Martin JB, Bird ED. Clinical and neuropathologic assesment of severity in Huntington’s disease. Neurology 1988;38:341–347

3Damiano M, Galvan L, Déglon N, Brouillet E. Mitochondria in Huntington’s disease. Biochim Biophys Acta2010;1802:52–61

4Paoletti P, Vila I, Rifé M, Lizcano JM, Alberch J, Ginés S. Dopaminergic and glutamatergic signaling crosstalk in Huntington’s disease neurodegeneration: the role of p25/cyclin dependent kinase 5. J Neurosci 2008;28(40):10090–10101

5Meuer K, Suppanz IE, Lingor P, Planchamp V, Göricke B, Fichtner L, Braus GH, Dietz GP, Jakobs S, Bähr M, Weishaupt JH. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 2007;14(4):651–61

KeyWords
  • mitochondrial dysfunction
  • cyclin-dependent kinase 5
  • dopamine D1 receptor
  • huntingtin

Statistics from Altmetric.com

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.