Late progression of neurological symptoms and MRI T2 hyperintensities in Parry-Romberg syndrome

We describe a case of a 50-year-old woman who developed drug-resistant status epilepticus with complex partial and secondary generalised seizures. She had suffered from Parry-Romberg syndrome (PRS) for more than 40 years. Right-sided progressive hemifacial atrophy (PHA) had begun at the age of 7 (figure 1A), followed by epilepsy at the age of 14 years. In the past 2–3 years before the latest admission, the patient had developed a progressive left-sided hemiparesis concomitant with an increase of T2-hyperintensities in the white matter of the right hemisphere, ipsilateral to the PHA (B–D). Moreover, MRI scans illustrated ipsilateral cerebral atrophy (B–D). Blood-sensitive axial imaging revealed evidence of microhaemorrhages or microcalcifications in the right hemisphere (E). Cerebral atrophy was accompanied by contralateral cerebellar atrophy (F). Intrathecal IgG-synthesis in a brain biopsy (G) confirmed neuroinflammation as a potential pathophysiological correlate of PRS.1,2 Glucocorticoid treatment subsequently stabilised the late clinical progression.

Typically, PRS shows initial manifestation in the first 20 years of life and then progresses slowly over the following 2–20 years before reaching quiescence.3 However, late onset until the sixth and seventh decades of life has also been described.1,3 Our patient showed a comparatively late progression, more than 40 years after disease onset. As a neurocutaneous disorder, PRS is characterised by PHA, which shows a clinical overlap with localised scleroderma (morphoea en coup de sabre) as well as by central nervous system involvement, the most common extracutaneous finding.1,3 Epilepsy, often refractory to anticonvulsive medication, and headache, are the most common neurological manifestations. Other manifestations include cranial neuropathies as well as cerebrovascular abnormalities and vascular brain lesions, leading to weakness and atrophy of the contralateral extremities. An autoimmune-mediated pathophysiological mechanism of PRS has been postulated.1–4 Focal vascular dysfunction due to localised autoimmune-mediated vasculitis may lead to the clinical picture of PHA and diverse neurological symptoms. Evidence for inflammatory processes are given by the following findings in PRS: perivascular and diffuse lymphocytic infiltration in biopsy specimens, local immunoglobulin synthesis in cerebrospinal fluid, occasional coexistence with other autoimmune disorders and frequent improvement of the clinical course following immunosuppression. Three of these four inflammatory characteristics existed in our patient.

Payam Dibaj,1,2 Gregor Herrendorf,1 Erik Bahn,3 Mark Obermann1

1Center for Neurology, Asklepios Hospitals Schildautal, Seesen, Germany
2Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
3Department of Neuropathology, University of Göttingen, Göttingen, Germany

Correspondence to Dr Payam Dibaj, Center for Neurology, Asklepios Hospitals Schildautal, Karl-Herold-Str 1, Seesen 38723, Germany; p.dibaj@asklepios.com

Acknowledgements The authors thank Prof Uwe Windhorst, MD, for carefully revising the manuscript.

Contributors PD was involved in the drafting and revising the manuscript, conception of the study, analysis and interpretation of data, final approval. GH was involved in revising the manuscript, acquisition of data, analysis and interpretation of data, final approval. EB was involved in revising the manuscript, acquisition of data, analysis and interpretation of data, final approval. MO was involved in revising the manuscript, conception of the study, analysis and interpretation of data, final approval. PD takes responsibility for the integrity of the data and the accuracy of the data analysis.

Competing interests EB has received honoraria for lectures, from Biogen and Bayer Vital. MO has received scientific support, travel support and/or honoraria, from Biogen Idec, Novartis, Sanofi-Aventis, Genzyme, Pfizer, Teva and Heel, as well as receiving research grants from Allergan, Electrocore, Heel and the German Ministry for Education and Research (BMBF).

Patient consent Obtained.

Ethics approval Ethics committee of Asklepios clinics.

Provenance and peer review Not commissioned; externally peer reviewed.

Received 12 January 2016
Revised 8 March 2016
Accepted 28 March 2016
Published Online First 12 April 2016

J Neurol Neurosurg Psychiatry 2016;87:1254–1255.
doi:10.1136/jnnp-2016-313091

Figure 1 Brain MRI follow-up study. Right hemifacial atrophy (A). Axial imaging revealed a distinct progression of T2 signal hyperintensity in the white matter of the right hemisphere, with corresponding atrophy demonstrated by serial MRI over 3 years (B–D). T2*-weighted axial imaging revealed microhaemorrhages or microcalcifications in the right hemisphere (arrows in E). Cerebral atrophy was accompanied by contralateral cerebellar atrophy (arrow in F, fluid-attenuated inversion recovery-weighted coronal imaging). Perivascular T-cell infiltration in two different regions (staining with CD3 and H&E; x200; scale bar 100 μm).
REFERENCES
Late progression of neurological symptoms and MRI T2 hyperintensities in Parry-Romberg syndrome
Payam Dibaj, Gregor Herrendorf, Erik Bahn and Mark Obermann

J Neurol Neurosurg Psychiatry 2016 87: 1254-1255 originally published online April 12, 2016
doi: 10.1136/jnnp-2016-313091

Updated information and services can be found at:
http://jnnp.bmj.com/content/87/11/1254

These include:

Supplementary Material
Supplementary material can be found at:
http://jnnp.bmj.com/content/suppl/2016/04/13/jnnp-2016-313091.DC1.html

References
This article cites 4 articles, 2 of which you can access for free at:
http://jnnp.bmj.com/content/87/11/1254#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Cranial nerves (503)
- Radiology (1690)
- Surgical diagnostic tests (378)
- Epilepsy and seizures (807)
- Brain stem / cerebellum (656)
- Immunology (including allergy) (1852)
- Headache (including migraine) (427)
- Pain (neurology) (712)
- Radiology (diagnostics) (1274)
- Vasculitis (90)
- Drugs: CNS (not psychiatric) (1879)
- Neuroimaging (378)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/