FDG-PET findings in three cases of Mills’ syndrome

Primary lateral sclerosis (PLS) is a rare subtype of motor neuron disease that exclusively affects upper motor neurons, usually beginning in the lower limbs and, less frequently in the bulbar region or the upper limbs.¹ In contrast to amyotrophic lateral sclerosis (ALS), PLS typically has a symmetrical presentation and this characteristic was part of the initially proposed PLS criteria.² We report 18-fluorodeoxyglucose-positron-emission tomography (FDG-PET) findings in three cases with an asymmetrical subtype of PLS, more commonly known as Mills’ syndrome.³ There is no universally accepted definition of Mills’ syndrome, but it is mostly referred to as a slowly progressive motor syndrome with unilateral or asymmetrical pyramidal signs.⁴ In this syndrome, the disease process remains more or less restricted to the motor areas contralateral to the affected side, as suggested by a study visualising microglial activation using 11C-(R)-PK11195 PET.⁵

Three female patients presented with an asymmetrical form of pure upper motor neuron dysfunction, starting in the right arm (patient 1 and 2) and the right leg (patient 3). The asymmetrical presentation correlated with clear regions of hypometabolism on FDG-PET in the contralateral Rolandic and peri-Rolandic areas, as can be seen in ALS or PLS⁶–⁸ (figure 1). MRI of the brain was unrevealing in all three patients. Extensive investigations did not reveal other underlying pathologies. Mutations in C9orf72, SOD1, FUS and TARDBP were excluded in all three patients. There was a concordance in limb dominance and site of onset, as all three patients were right handed.⁹

No clinical or electrodiagnostic signs of lower motor neuron involvement were noted up to 8 (patient 1), 4 (patient 2) and 2 years (patient 3) after disease onset. Over this period of time, the disease spread from the right arm to the right leg and, to a lesser degree, to the contralateral side (patient 1), remained restricted to the right arm (patient 2) and spread from the right leg to the right arm (patient 3). This suggests a disease propagation by contiguous spread, as opposed to a network-spreading pattern through the corpus callosum in typical PLS.

Koen Van Laere,¹ Guido Wilms,² Philip Van Damme³,⁴,⁵
1 Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
2 Department of Radiology, University Hospitals Leuven, Leuven, Belgium
3 Department of Neurology, University Hospitals Leuven, Leuven, Belgium
4 Department of Neurosciences, KU Leuven—University of Leuven, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (UNI), Leuven, Belgium
5 Laboratory of Neurobiology, VIB, Vesalius Research Center, Leuven, Belgium

Correspondence to Professor Philip Van Damme, Neurology Department, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; philip.vandamme@uzleuven.be

Acknowledgements The authors acknowledge the skilled help of the radiopharmacy team at UZ Leuven.

Funding This work was supported by a grant from the KU Leuven (GOA/11/014), by the Interuniversity Attraction Poles (IUAP) programme P7/16 of the Belgian Federal Science Policy Office.

Figure 1 T2-weighted MRI (upper row) and stereotactic surface projections of the brain 18-fluorodeoxyglucose-positron-emission tomography (FDG-PET; middle row, cranial view) with corresponding Z-score images (comparing patient to healthy volunteers; lower row). No lesions on MRI that could explain the hypometabolism on FDG-PET were noted.
Federal Science Policy Office, by the FWO-Vlaanderen under the frame of E-RARE-2, the ERA-Net for Research on Rare Diseases (PYRAMID) and by a EU Joint Programme—Neurodegenerative Disease Research (JPND) project (STRENGTH). PVD is supported by the Belgian ALS League. KVL and PVD are senior clinical investigators of the Flemish Fund for Scientific Research (FWO, Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Belgium).

Competing interests None.

Ethics approval Ethics approval was from our institutional IRB (UZ Leuven).

Provenance and peer review Not commissioned; externally peer reviewed.

To cite Van Laere K, Wilms G, Van Damme P. J Neurol Neurosurg Psychiatry 2016;87:222–223.

Received 18 November 2014
Revised 29 December 2014
Accepted 7 January 2015
Published Online First 28 April 2015

J Neurol Neurosurg Psychiatry 2016;87:222–223. doi:10.1136/jnnp-2014-309952

REFERENCES
FDG-PET findings in three cases of Mills' syndrome

Koen Van Laere, Guido Wilms and Philip Van Damme

J Neurol Neurosurg Psychiatry 2016 87: 222-223 originally published online April 28, 2015
doi: 10.1136/jnnp-2014-309952

Updated information and services can be found at:
http://jnnp.bmj.com/content/87/2/222

Supplementary Material

Supplementary material can be found at:
http://jnnp.bmj.com/content/suppl/2015/06/30/jnnp-2014-309952.DC1.html

References

This article cites 8 articles, 4 of which you can access for free at:
http://jnnp.bmj.com/content/87/2/222#BIBL

Open Access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Open access (215)
- Radiology (1686)
- Radiology (diagnostics) (1270)
- Motor neurone disease (294)
- Neuromuscular disease (1271)
- Drugs: CNS (not psychiatric) (1874)
- Spinal cord (522)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/