FREQUENCY ANALYSIS OF PHYSIOLOGICAL AND NEUROTIC TREMORS

BY

J. W. T. REDFEARN

From the Army Operational Research Group, West Byfleet, Surrey

It seems reasonable to assert that the diagnostic distinctions between the common organic causes of tremor emerged clearly during the sixties of the last century, and that this was partly due to the work of Charcot and his pupils. At this time also the Marey tambour (Marey, 1868) came into widespread use. These two circumstances seem to have been responsible for the first attempts to study graphical records of tremor by Charcot’s pupils, and it was in turn upon these experimental results that Charcot based his later teaching (Charcot, 1888, 1889) on tremors. He divided the non-intentional tremors into three main groups: (1) Slow, 4-5 per second (Parkinsonian); (2) intermediate, 5-6 per second (hysterical); (3) rapid or vibratory, 8-9 per second (Basedow’s disease, alcoholism, general paralysis of the insane).

As far as the tremors of neurosis are concerned, Charcot’s later pupils (e.g., Dutil, 1891) were able to show that this scheme was an oversimplification and that hysterical tremors, for example, were often vibratory in type. Since then there has been little advance in our knowledge of the neurotic tremors. Most clinicians have simply divided neurotic tremors into the categories of coarse and fine, corresponding with the intermediate and the vibratory groups respectively. The coarse tremors are commonly associated with hysteria and are often, on the basis of wartime experience, held to carry a better prognosis than the fine tremors, which are commonly associated with anxiety and other neuroses (Mott, 1919).

Meanwhile Schäfer (1886) had demonstrated a 10-per-second rhythm in the normal human voluntary myogram, and a majority of subsequent authors have found this to be the predominant frequency of physiological tremor.

Theories sometimes held to account for this family of physiological and neurotic tremors may be summarized as follows: (a) That the rhythm is determined by the mechanical properties of the muscle or of the muscle twitch; (b) that it is due to the delayed self-correction inherent in the stretch reflex; (c) that there is some intrinsic rhythmical propensity at the spinal level; and (d) that the rhythm is due to driving by higher centres, e.g., the motor cortex.

It must be observed that the relationship between “physiological”, emotional, thermal, and neurotic trembling has never been precisely defined. It is therefore not usually possible to be clear as to exactly which type or types of tremor these theories are held to explain.

This paper describes the frequency analysis of normal and neurotic tremors, the results of which suggest a common physiological basis. The definition of a neurotic tremor used in this paper is a tremor occurring in a person suffering from neurosis. It will be seen that from the point of view of the harmonic components of neurotic tremors, they are largely an exaggerated form of physiological tremor. The above definition is therefore a logical necessity.

Methods

It was decided to record finger displacement rather than finger velocity, acceleration, or the forces exerted by the finger. It is the displacement and not the velocity or acceleration of the finger which is seen by the clinician as tremor. And secondly, it is possible to obtain records of velocity or acceleration from the displacement record by the simple mathematical or electronic means to be described here.

An inertialess system of recording was felt to be necessary, as the effect of the inertia of the trembling part (see Halliday and Redfearn, 1956) was not clear at the time of the experiments to be reported here, and indeed a study of this factor was one of the first items on the experimental programme (Redfearn, 1957, Appendix F).

The recording method used, although later modified by Cooper and Halliday, was essentially the same as that described by Cooper, Halliday, and Redfearn (1957) (for details of the earlier version see Redfearn, 1956). The index finger or other trembling part interrupted a parallel beam of light and cast its shadow over the lower half of a slit placed in front of a photocell. The output from the photocell, which was linearly related to the angular displacement of the finger, was amplified by
FREQUENCY ANALYSIS OF TREMOR

means of a capacity coupled push-pull amplifier with a
time constant such that there was less than 5% loss at
1·5 c./sec. The output from the amplifier was used in a
Hughes four-pen recorder. The other channels of
recording comprised a signal-marker channel, a record
of the velocity or acceleration of the finger as obtained
by one or two stages of electronic differentiation, and
(usually) the electromyogram of the common extensor of
the fingers obtained from surface electrodes. The in-
strument was calibrated by rotating an elliptical disc in
front of the slit. The relationship between shadow dis-
placement and pen displacement was linear over the
range used. The subject was seated comfortably with his
right forearm supported as in an armchair. The right
forearm, wrist, and the fingers not being used for record-
ing were immobilized as far as practicable by splints and
bandages. Only movement at the metacarpophalangeal
joint was allowed, the finger being immobilized distal to
this joint by means of cellulose tape. The subject
was asked to extend his finger comfortably, not rigidly, so
that its shadow fell across the photocell slit. No precise
aiming was required. Only severely depressed patients
were found to allow their fingers to sag sufficiently for
the shadow to fall away from the slit. No such patients
were among the groups to be described.

The photocell housing, the rest for the forearm and
hand, and the lamp housing were all supported in a
robust steel and concrete structure so as to avoid any
artefacts due to vibration under normal recording con-
ditions. Artefacts produced deliberately by knocks and
bangs applied to various parts all had a high frequency
many times those considered in this paper.

The stretch reflexes in the muscles extending the finger
were recorded by subjecting the finger to a very sudden
change in tension and recording the resulting changes in
acceleration. The method is described by Cooper et al.
(1957).

The tremor records were subjected to analysis of their
harmonic composition. The method of analysis used
was the Army Operational Research Group wave
analyser, which is a modification of the Admiralty
Research Laboratory frequency analyser (Barber, Ursell,
Darbyshire, and Tucker, 1946). The original record (a)
(Fig. 1) was enlarged and converted to a black-and-white
silhouette (b) on a strip of paper. This was placed on the
circumference of a drum which was made to rotate
with varying speed. The trace was analysed into its
harmonic components by a combination of photocell and
selective amplifier and each harmonic component written
out as a pen deflection, thus yielding a line spectrum (c).
Each analysis corresponded with a duration of record of
about four and a half seconds. In addition to the
frequency analysis of each record the total tremor was
measured in units of mean angular finger velocity by
planimeter.

Procedure

Twenty-nine normal and 32 neurotic young men were
studied. Tremor and stretch reflex records were taken,
and each man was subjected to a psychiatric interview in
which certain items in the anamnysis were recorded and
a clinical diagnosis made. The normal men were con-

valescent from various minor physical disabilities or
maladies, and the neurotic group represented the popula-
tion of two psychoneurotic wards of a military hospital.
The records were taken by technical assistants on the day
following the clinical interview. These technical assistants
were of the same age and seniority as the subjects and
the entire recording procedure was made as matter-of-
fact and reassuring as possible. Several tremor records
were taken from each subject, at intervals of two or
three minutes. There was no tendency for the tremor to
change during the recording session and so average
values for all records could be taken. It had been expected
that tremor would subside as the subject became more
accustomed to the procedure but no such trend occurred
over the period of 20 minutes or half an hour during
which records were being taken.

The qualitative clinical diagnoses being of no use for
the statistical purposes intended, each subject was given a
rating on a scale of hysteria, a scale of anxiety, a scale of
depression, and one of tension. As only six patients
showed any tension at all this last scale could not be
used statistically, although the mean tremor amplitude
for the patients with tension was a good deal higher than
for those without. A brief description follows of the
criteria used for rating.

In view of the virtual absence of text-book features of
hysteria in most members of the neurotic group, the
rating of hysteria was based on the degree of discrepancy
between the emotional display of which the patient was
aware, and his real feelings as judged from those mani-
festations of emotion of which he was not aware, and
from his general conduct. The characteristic being rated
under this heading is well described by Bleuler (1924)
in the English translation of whose text-book one reads:—

"In the purely psychic sphere one might mention
the following permanent symptoms, which though
belonging essentially to the hysterical disposition are
also re-inforced by manifest hysteria: lability of the
affects, moodiness, momentary reactions in all relations,
with exaggerated affective outburst in various direc-
tions. The latter display mostly something of the
theatrical: one has the feeling that the real affective
force displayed does not quite correspond to the
amount of crying and tears. . . . Under certain con-
stellations hysterics may temporarily or lastingly
appear indifferent, poor in feelings, just like in an
affective torpor."

Thus the hysterical individual may be putting up too
much of an emotional display, or not enough, to be
consistent with what the psychiatrist judges to be his
real feelings. This was the criterion used here. Of the
criteria used it was far the most reliable in practice. The
rating was carried out on a four-point scale, according
to whether these characteristics were absent, present,
marked, or florid.

The severity of anxiety was rated in a similar manner,
according to whether it was absent, present, or marked.
No sufficiently severely anxious patients were in the
group to be placed in the fourth category which had been
reserved. The amount of anxiety was assessed according
to the patient's statements about his feelings and present
Fig. 1.—The stages in the process of automatic frequency analysis.
FREQUENCY ANALYSIS OF TREMOR

TABLE I

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Main Clinical Features</th>
<th>Clinical Diagnosis</th>
<th>Clinical Ratings for Hysterical tremor</th>
<th>Mean Angular Finger Velocity (rad./sec. × 10⁻⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1</td>
<td>Complains of tremor due to bad nerves, of all parts of body.</td>
<td>Hysterical tremor</td>
<td>2 1 1</td>
<td>68.3</td>
</tr>
<tr>
<td>N2</td>
<td>Complains of feelings of unbearable tension and murderously aggressive feelings towards officers.</td>
<td>Tension state</td>
<td>1 2 0</td>
<td>44.4</td>
</tr>
<tr>
<td>N3</td>
<td>Complains of stomach pains, dizzy spells, weeping spells, worries about things at home, hates Army. Childish manner.</td>
<td>Anxiety state</td>
<td>1 2 1</td>
<td>25.7</td>
</tr>
<tr>
<td>N4</td>
<td>Complains of anxiety state of 9 years' duration. Has dizzy spells, feels weak over whole of left side, worries about masturbation. Palpitations, bad dreams.</td>
<td>Mild anxiety state</td>
<td>1 1 1</td>
<td>33.3</td>
</tr>
<tr>
<td>N5</td>
<td>Wandered off in a fugue for a day. He "came to" people's faces looked like gargoyles. Complains of a grey outlook on life.</td>
<td>Hysterical fugue?</td>
<td>2 1 0</td>
<td>29.5</td>
</tr>
<tr>
<td>N6</td>
<td>Worries about wife being pregnant and not having married quarters. A quiet, inadequate, shy person who suddenly attacked his mother-in-law.</td>
<td>Reactive depression</td>
<td>1 1 1</td>
<td>15.3</td>
</tr>
<tr>
<td>N7</td>
<td>Complains of headaches caused by exertion. Has to lie down, where it is nice and quiet. Puts on a great and continual show of suffering.</td>
<td>Hysteria</td>
<td>3 1 0</td>
<td>57.8</td>
</tr>
<tr>
<td>N8</td>
<td>Neck twists towards one side from time to time. No pain.</td>
<td>Torsion spasm</td>
<td>2 0 0</td>
<td>36.0</td>
</tr>
<tr>
<td>N9</td>
<td>Complains of pains in chest. Fears tuberculosis. Palpitations, funny feelings inside. Worries about masturbation and homosexual practices.</td>
<td>Anxiety state</td>
<td>1 1 0</td>
<td>37.0</td>
</tr>
<tr>
<td>N10</td>
<td>Worries about lack of manliness, bad nerves. Cannot sleep. Dizzy spells, palpitations, headaches, tremor on excitement. Quiet and retarded.</td>
<td>Reactive depression</td>
<td>0 1 2</td>
<td>28.0</td>
</tr>
<tr>
<td>N11</td>
<td>Browned off. Has had vague ideas of suicide. Moody, always in trouble and always rowing with people. Dreamt last night he poisoned sergeant's mother.</td>
<td>Psychopath</td>
<td>0 0 1</td>
<td>56.5</td>
</tr>
<tr>
<td>N12</td>
<td>Fed up with the Army, always in trouble. Always late for parade. "They tell me off and it makes me worse."</td>
<td>Anxiety state</td>
<td>1 1 1</td>
<td>50.7</td>
</tr>
<tr>
<td>N13</td>
<td>Rosaries of memory slips, feelings of unreality. When his mind gets clearer he begins to tremble. A tense, rigid personality.</td>
<td>Anxiety, derealization</td>
<td>0 1 1</td>
<td>34.9</td>
</tr>
<tr>
<td>N14</td>
<td>Must continually wear his hat because he cannot bear people to see that he is going bald. Has to eat separately in his hat.</td>
<td>Obsessional state</td>
<td>0 0 0</td>
<td>31.5</td>
</tr>
<tr>
<td>N15</td>
<td>Complains of tremor of abdominal muscles, arms, and legs. The Army is to blame. Also has palpitations and dizzy spells. "They ought to send me home."</td>
<td>Hysteria</td>
<td>3 1 0</td>
<td>75.6</td>
</tr>
<tr>
<td>N16</td>
<td>Complains of domestic worries. Cannot be happy anywhere. Intends to desert. Does not seem very anxious or depressed on examination.</td>
<td>Psychopath</td>
<td>0 1 0</td>
<td>20.2</td>
</tr>
<tr>
<td>N17</td>
<td>Has had headaches and depression with suicidal thoughts since strain prevented his beloved sprinting. Narcissistic, body conscious, rigid person.</td>
<td>Reactive depression</td>
<td>1 0 2</td>
<td>33.4</td>
</tr>
<tr>
<td>N18</td>
<td>Complains of lack of confidence, shyness, fears of being homosexual. Worse for past two years. A good basic personality, capable and likeable.</td>
<td>Depression</td>
<td>0 1 2</td>
<td>14.5</td>
</tr>
<tr>
<td>N19</td>
<td>Depression, easily fluttered and upset since bad shelling in Italy. Tires easily, has dizzy spells and palpitations.</td>
<td>Chronic anxiety state</td>
<td>1 2 1</td>
<td>30.0</td>
</tr>
<tr>
<td>N20</td>
<td>Dizzy spells, tremor from waist downwards, "jitters" since a serious artillery accident. Much aggression towards authority.</td>
<td>Traumatic neuritis</td>
<td>1 1 0</td>
<td>12.3</td>
</tr>
<tr>
<td>N21</td>
<td>Dizzy spells, blackouts since joining Army. Much weeping on interview. Blackouts occur when he thinks about home.</td>
<td>Reactive depression</td>
<td>2 1 2</td>
<td>37.9</td>
</tr>
<tr>
<td>N22</td>
<td>Complains of about 30 obsessional habits "which I write down for the Command psychiatrist." Mood labile, irritable.</td>
<td>Obsessive personality</td>
<td>0 0 0</td>
<td>24.3</td>
</tr>
<tr>
<td>N23</td>
<td>Complains of having no emotions. "Every time I kiss my wife I feel like belting her," Very perfectionistic.</td>
<td>Depression</td>
<td>0 0 1</td>
<td>17.2</td>
</tr>
<tr>
<td>N24</td>
<td>Suicidal attempt with morphine after being told that his recently adopted homosexual practices could not be cured.</td>
<td>Depression, derealization</td>
<td>0 1 2</td>
<td>28.7</td>
</tr>
<tr>
<td>N25</td>
<td>Complains of lack of concentration, restless, always losing temper with authorities and with wife, sense of internal excitement. Wants to fight his way out.</td>
<td>Reactive depression</td>
<td>1 1 0</td>
<td>87.1</td>
</tr>
<tr>
<td>N26</td>
<td>Preoccupied with thought of having V.D. Dizzy spells, night terrors, palpitations, headaches. Has always been babied excessively.</td>
<td>Anxiety state</td>
<td>1 2 1</td>
<td>41.6</td>
</tr>
<tr>
<td>N27</td>
<td>Headaches, retardation, poor sleep since concussion 5 months previously. Always has been shy and suffered from bad nerves.</td>
<td>Depression</td>
<td>0 1 2</td>
<td>16.7</td>
</tr>
<tr>
<td>N28</td>
<td>Always tired, depressed, cannot eat or sleep since girl jilted him 18 months previously. Suicidal attempt.</td>
<td>Depression</td>
<td>0 1 2</td>
<td>22.9</td>
</tr>
<tr>
<td>N29</td>
<td>Complains of suicidal tendencies. Weeps a great deal, talks incessantly of domestic worries including religious wife who neglects him.</td>
<td>Inadequate, hysterical</td>
<td>2 1 1</td>
<td>47.9</td>
</tr>
<tr>
<td>N30</td>
<td>Complains of bad nerves all his life. Gets pains in head when排行 of shout at him. Cannot stand filthy language. Pains in chest.</td>
<td>Anxiety-hysteria</td>
<td>2 1 0</td>
<td>25.4</td>
</tr>
<tr>
<td>N31</td>
<td>Dizziness, blackouts, and headaches caused by noise. Many tears during interview.</td>
<td>Hysterical, inadequate Anxiety state</td>
<td>3 1 0</td>
<td>61.0</td>
</tr>
<tr>
<td>N32</td>
<td>No appetite, head has felt heavy for 6 months. Many anxiety symptoms. He is falsely mocked as a homosexual by his fellows.</td>
<td>Anxiety state</td>
<td>0 1 1</td>
<td>26.7</td>
</tr>
</tbody>
</table>
FIG. 2.—Intra-group and intra-individual variations in frequency and amplitude. The records were selected at random. The same amplitude (vertical) and frequency (horizontal) scales are used throughout.
illness, and from anxiety symptoms and signs at interview. Although at first sight easier to rate than hysteria as defined above, it was in practice less satisfactory, as the various alleged manifestations of anxiety are relatively independent of each other in their occurrence.

None of the patients in the neurotic group was severely depressed. Each neurotic patient was rated according to whether he was not depressed, or mildly depressed, or moderately depressed, as judged mainly from his own statements. In all the ratings zero means that the characteristic was absent and the other figures are in increasing order of severity.

Results

The results given below apply to the tremor of the right index finger, although they seem to apply qualitatively to other fingers and indeed to other parts of the body. The main clinical features, clinical diagnosis, ratings, and the mean angular finger velocity of each neurotic subject are recorded in Table I. The mean finger velocity for the neurotic group was 36-6 radians per sec. × 10⁻³ (S.D. 18-4 radians/sec. × 10⁻³). The mean finger velocity of the normal group was 18-3 radians/sec. × 10⁻³ (S.D. 4-9 radians/sec. × 10⁻³). About half of the neurotic group have values higher than the highest normal value. The clinical findings in the normal group are not given here as apart from two ratings of one in "hysteira" and one in "anxiety" they were entirely negative.

A random sample of neurotic and normal frequency spectra is shown in Fig. 2, together with 10 spectra from one normal individual taken at different times of the day. It is seen that both amplitude and frequency composition show the same sort of variations between individuals as in the same individual at different times, although the extent of the latter source of variance is not, of course, so large. Variations in harmonic composition in the same individual occur over periods of seconds. Samples of records of 10 seconds duration do not show nearly as much variation as the four-second samples shown.

Instead of analysing a sample of record of longer duration, corresponding lines of different spectra from the same individual may be averaged (Fig. 3) to form a composite spectrum for the individual. The same procedure may be followed for a group of individuals. The composite spectrum for groups of individuals is similar to the composite spectrum of one individual, but not identical, as there are some differences of harmonic composition between individuals.

The main objection to the taking of simple means in order to arrive at average or composite spectra is that, if the distribution of tremor amplitudes among individuals were not normal but skewed, the composite spectrum would over-emphasize higher or lower values. Tremor amplitudes do, in fact, have a markedly skewed distribution, such that the logarithms of the amplitudes have a much more nearly normal distribution than do the amplitudes themselves. It is therefore, strictly speaking, far less exceptionable to obtain a composite spectrum for a group only when all members of the group have comparable amplitudes. To square amplitudes and obtain root mean square values for a group of individuals, as some physicists would do, would mean that the composite root mean square spectrum

![Composite partial spectrum for 29 normal adult males.](http://jnnp.bmj.com/)

![Composite partial spectrum for 22 separate records from one (normal) individual. (The amplitude scale is arbitrary)](http://jnnp.bmj.com/)

Fig. 3.—The composite spectrum of one normal individual.
Fig. 4 (a).—Average partial frequency spectra of groups of normal subjects (solid lines) and neurotic subjects (dotted lines).
Fig. 4 (b).—Average partial frequency spectra of turning moments for groups of normal subjects (solid lines) and neurotic subjects (dotted lines).
for a group would, in fact, merely be the spectrum of the one or two individuals with the largest amplitude.

If the tremor spectra of individuals with comparable amplitude are meant, displacement spectra for neurotic and normal sub-groups are obtained as in Fig. 4 (a). These displacement spectra represent the frequencies of tremor as seen clinically. The spectrum for the high-amplitude neurotic group appears qualitatively different from those of the other groups in that there is a hump around 5 or 6 c./sec. (as in Charcot's teaching). The other spectra appear to fall off in amplitude progressively with frequency more or less in accordance with the relationship

\[\text{amplitude} \times \text{square of frequency} = \text{a constant} \]

(cf. Halliday and Redfearn, 1956).

The sharp peak in all the spectra at just under 12 c./sec. is an artefact caused by using squared paper on the frequency analyser.

Displacement spectra are of no great interest apart from representing the clinician's sensory data. To represent the forces playing upon the trembling part, acceleration spectra (Fig. 4 (b)) are obtained from the displacement spectra by multiplying the latter by the square of the frequency. (Again, the values for 12 c./sec. should be ignored.) It is now seen that all the sub-groups show forces acting with peak amplitudes at around 8 or 9 c./sec. This suggests that the mechanism underlying the tremor of all the sub-groups is a common mechanism causing muscular forces to fluctuate with a rhythm of 8 or 9 c./sec.

Tremor Frequency and Diagnosis

From the neurotic patients were selected those fitting most readily into the commonly accepted diagnostic categories, namely, hysteria, anxiety state, reactive depression, and so on. From each case a tremor record was selected at random and these records are presented together in Fig. 5. It is obvious that there are no well-marked differences in frequency content from one diagnostic group to another, although there is a suggestion, borne out statistically, of a greater amplitude in the case of hysterical patients and a smaller amplitude in the case of the depressed patients than in their neurotic fellows. The composite displacement and acceleration spectra for the patients with high hysteria and anxiety ratings, as compared with the normal group, are respectively shown in Figs. 6 (a) and (b). As with Fig. 4 (a), comparison of the displacement spectra shows a tendency for the hysterical group to show a bulge at around 5 or 6 c./sec. and for the anxiety group to show a bulge at around 8 c./sec., as does the normal group. Again this observation accords well with those of Charcot and his pupils. However, the acceleration spectra, which can be taken approximately to represent the muscular forces involved, show up the large degree of similarity of frequency distribution among the different diagnostic categories.

Stretch Reflexes and Tremor Amplitude

These findings will be described more fully in a later communication. It is sufficient here to state that in the normal group there was no correlation between the size of the reflex response to sudden stretch on the one hand and tremor amplitude on the other. In the neurotic group, however, there was a significant positive correlation between the two variates. The observations on the normal group agree with those of Halliday and Redfearn (1956).

Discussion

The visual inspection of a trembling limb or of a tremor record gives only an extremely approximate idea of the frequency components of the tremor, except in the case of a more or less pure rhythm such as occurs in Parkinsonism. The main reason for this unreliability is that one tends to perceive only the high frequency components of a tremor and to ignore the low frequency components (Redfearn, 1956). Although for some experimental purposes it is possible to select a subject who often shows a very pure and well marked rhythm, the only valid method of describing the tremor of most individuals over a period of minutes or longer, or of describing the tremor of a group of individuals, would seem to be in terms of a frequency spectrum.

As it is muscular forces which are responsible for tremor, it is the frequency distribution of these forces (or the accelerations which result from these forces and which are directly proportional to them) which is of greatest interest. Whether we divide our neurotic population according to amplitude of tremor or according to diagnosis, it is clear that the most striking finding, indeed the only reliable finding, is of a similarity of the shape of the spectra not only with each other but with the spectrum of the group of normal individuals. Both the normal and the neurotic spectra show, first, tremor at all frequencies which by analogy can be termed noise, i.e., random activity at all frequencies. Secondly, there is a distinct peak around 8 c./sec. in all groups.

The neurotic group as a whole shows a sub-peak at 13 c./sec., but this finding cannot be considered reliable, as the displacement spectra, from which these acceleration spectra were obtained (by multiplying by frequency squared), were diminishing rapidly at this frequency and were not much above the noise level of the apparatus. A much more
FREQUENCY ANALYSIS OF TREMOR

Case N1 (1st record) Hysteria

Case N7 (1st record) Hysteria

Case N8 (4th record) Hysteria

Case N15 (4th record) Hysteria

Case N31 (1st record) Hysteria

Case N3 (1st record) Anxiety State

Case N12 (1st record) Anxiety State

Case N19 (2nd record) Anxiety State

Case N26 Anxiety State

Case N32 (3rd record) Anxiety State

Case N10 (2nd record) Depression

Case N17 (5th record) Depression

Case N18 (3rd record) Depression

Case N23 (2nd record) Depression

Case N24 (5th record) Reactive Depression

Case N2 (1st record) Tension State

Case N25 (2nd record) Tension State

Case N14 (2nd record) Obsessional State

Case N22 (2nd record) Obsessive Personality

Case N13 (4th record) Derealization

Fig. 5.—Tremor and diagnosis: displacement frequency spectra of randomly selected records from typical cases of various diagnostic categories. The same amplitude scale is used throughout.
Fig. 6 (a).—Average displacement frequency spectra, and (b) average turning-moment frequency spectra of hysterical patients, patients showing anxiety, and normal persons compared.

Reliable finding is a sub-peak or bulge at 5-6 c./sec. in the acceleration spectra, and particularly noticeable in the displacement spectra, of those neurotic subjects with the tremor of greatest amplitude. In the groups studied here, and evidently in Charcot's experience, the subjects with the tremor of greatest amplitude were often hysterical, but no definite rule is possible.
Generalizations are only possible about dominant frequencies if the tremor is recorded over longer periods than the four or five seconds of record from which were obtained the individual spectra shown in this paper. During periods of a few seconds there may be waves or runs of waves at any frequency between about 5 and 12, or even more, so that the spectrum shows a marked hump or perhaps two or three humps at the corresponding frequency or frequencies. In order to obtain a smooth and reproducible spectrum from one individual it is preferable to record tremor over a minute or two, although this depends somewhat on the method of frequency analysis in use.

From the similarity of the general shape of the force spectra of the normal and neurotic groups, and also from the similarity in general character of the tremor trace (apart from amplitude), it can be argued that whatever the factors are which determine tremor frequency, normal and neurotic tremors may well possess these factors in common, to a large extent. Even the apparent differences, for example, the increased activity at about 5 c./sec. in the grossly tremulous neurotics, probably only represent exaggerations of normal processes, because slow waves or runs of slow waves do occur in normal records.

It is shown elsewhere (see Lippold, Redfearn, and Vučo, 1957a, for a preliminary communication) that a peak of activity at 8-10 c./sec. occurs in the tremors of emotion (waiting for an important interview), of shivering from cold, of muscular fatigue, and of thyrotoxicosis. It would appear that, as a first approximation at least, neurotic tremors may in many or most cases be placed in this category of tremors. Of course, it is only to be expected that with refinements of technique and larger numbers of subjects, valid distinctions between subgroups may be possible.

Evidence is presented elsewhere (Halliday and Redfearn, 1956, 1957; Lippold et al., 1957a and b) which can be interpreted as supporting the hypothesis that the mechanism underlying the 8-10 c./sec. peak is "hunting" in the stretch reflex servo loop. However this may be, the mechanism underlying the random or noisy element of tremor, possibly the more important element, and the mechanisms underlying the variations in amplitude of tremor, remain unclear. Any tendency towards synchronous firing of motoneurones would increase the random element of tremor, and there are undoubtedly several ways in which this tendency might be brought about, including motoneurone damage and increased Renshaw inhibition.

SUMMARY

Finger tremor was recorded by a photo-electric method in 29 young adult normal male subjects and 32 psychoneurotic subjects of similar age, sex, and background. The tremor records were subjected to automatic frequency analysis. Each control and neurotic subject had a psychiatric interview and was rated for hysterical features, anxiety, and depression.

The neurotic group was subdivided according to (a) diagnosis and (b) magnitude of tremor. However, the group was sub-divided, the subgroups all showed fundamentally the same shape of frequency spectrum as each other and as the normal group. The peak of tremor activity in all groups occurred at about 8 c./sec., rising from a plateau of random or irregular activity. The neurotic subjects with the most tremor showed a sub-peak at 5-6 c./sec. and these neurotic subjects were often the ones with high ratings in hysteria. Compared with the main peak this sub-peak is not very marked in terms of the forces involved. The general amplitude of tremor was, of course, much higher in the neurotic group as a whole than in the normal group. The fundamental similarity in frequency spectra, apart from the relative size of the 5-6 cycle component, suggest that the mechanisms which determine tremor frequency may be largely common to both normal and neurotic groups, although the mechanisms determining amplitude are clearly more active among the neurotic subjects.

REFERENCES

