Occurrence of lipofuscin in inherited metabolic disorders affecting the nervous system

KRISTER KRISTENSSON AND PATRICK SOURANDER

From the Neuropathological Laboratory, Department of Pathology I, University of Gothenburg, Sweden

According to Björkerud (1964), the lipofuscin granules may be described as intracellular entities defined by their structural, histochemical, and physical properties on the light microscopic level. They are characterized by, for example, yellowish primary fluorescence, poor solubility, acid-fastness, and stainability with the periodic-acid-Schiff method (McManus, Hotchkiss) and Sudan black B. The occurrence of lipofuscin in various organs, including the brain, is associated with the process of ageing (Obersteiner, 1912; Gellerstedt, 1933; Hamperl, 1934; Strehler, Mark, Mildvan, and Gee, 1959; Brody, 1960) and starts very early, in fact in childhood. There are also, however, several reports on an increase in lipofuscin or ceroid, which, according to Pearse (1960), represents a typical lipofuscin in an early stage of oxidation, particularly in the brain and liver, in several diseases (Bachmann, 1953; Björkerud and Schelin, 1964; Wolman, 1964; Gilles, 1965). An increase of lipofuscin in animal tissues has also been found in various experimental conditions (Einarson and Telford, 1960; Sulkin and Srivani, 1960; Ashford and Porter, 1962; Neglia, Burrows, Thompson, and Schaffner, 1963).

Our interest in lipofuscin was evoked by the finding of large amounts of lipofuscin not only in the central nervous system but also in various visceral organs in juvenile amaurotic idiocy (Batten-Spiel-meyer-Vogt disease). As this disease is supposed to be due to a genetically determined metabolic disorder, it would be interesting to study the occurrence of lipofuscin in other inherited metabolic diseases, particularly those involving the nervous system.

MATERIAL AND METHODS

The material consisted of necropsy specimens from one case of Niemann-Pick disease, two cases of Gaucher’s disease (one of the infantile, the other of the juvenile type), two cases of metachromatic leucodystrophy, one case of globoid body leucodystrophy (Krabbe’s disease), one case of infantile amaurotic idiocy (Tay-Sachs disease), and three cases of juvenile amaurotic idiocy (Batten-Spiel-meyer-Vogt disease). These cases were histologically examined by one of us (P. Sourander) and biochemically investigated by Dr. L. Svennerholm (Table I). As controls, brains were examined from three patients 15, 15, and 30 years of age, and visceral organs from four patients 13, 15, 15, and 32 years of age. These specimens were obtained from coroner’s necropsies following sudden death.

The tissues were fixed in a 10% neutral formalin solution. Blocks were obtained from the frontal lobe of the brain, the medulla oblongata, cerebellum, heart, liver, and spleen. Paraffin sections were used for staining with long Ziehl-Neelsen, periodic-acid-Schiff (P.A.S.) according to McManus’s method, and Sudan black B. Deparaffinized sections mounted in glycerol were examined by fluorescence microscopy at 3,650 Å.

According to Brody, the greatest amount of lipofuscin in cortical neurones, when present, is located in layer III. Consequently this layer was chosen for study. A semi-quantitative method described by Brody (1960) was used for the estimation of lipofuscin deposition within the neurones. According to this method, the neurones are divided into three groups: I no pigment, II scattered pigment, III aggregation of pigment in the cytoplasm (Fig. 1). Percentages were calculated after the examination of 500 neurones in P.A.S.-stained sections in each case. The lipofuscin content of visceral organs was graded from 0 to ++ +.
Krister Kristenson and Patrick Sourand

TABLE I

CLINICAL SUMMARIES RELATED TO NECROPSY FINDINGS

<table>
<thead>
<tr>
<th>Disease</th>
<th>Age at Onset</th>
<th>Age at Death</th>
<th>Cause of Death</th>
<th>Stored Substance</th>
<th>Main Pathological Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niemann-Pick</td>
<td>—</td>
<td>8 mth.</td>
<td>Circulatory insufficiency</td>
<td>Sphingomyelin; Niemann-Pick cells in spleen, liver; storage in ballooned subcortical nerve cells</td>
<td></td>
</tr>
<tr>
<td>Gaucher infantile</td>
<td>—</td>
<td>5½ yr.</td>
<td>Respiratory infection</td>
<td>Glucocerebroside; Gaucher cells in spleen, liver, cerebral cortex and white matter</td>
<td></td>
</tr>
<tr>
<td>Gaucher juvenile</td>
<td>—</td>
<td>16 yr.</td>
<td>Bronchopneumonia</td>
<td>Glucocerebroside; Gaucher cells in spleen, liver, cerebral cortex and white matter</td>
<td></td>
</tr>
<tr>
<td>Metachromatic leucodystrophy</td>
<td>1 yr.</td>
<td>3 yr. 10 mth.</td>
<td>Sepsis</td>
<td>Sulphatide</td>
<td></td>
</tr>
<tr>
<td>Metachromatic leucodystrophy</td>
<td>1 yr.</td>
<td>2½ yr.</td>
<td>Bronchopneumonia</td>
<td>Sulphatide</td>
<td></td>
</tr>
<tr>
<td>Krabbe</td>
<td>4 mth.</td>
<td>1 yr. 4 mth.</td>
<td>Respiratory infection</td>
<td>Cerebroside in globoid bodies; Metachromatic granules in cerebral white matter, dentate nucleus, and histiocytes of the liver</td>
<td></td>
</tr>
<tr>
<td>Tay-Sachs</td>
<td>6 mth.</td>
<td>4 yr.</td>
<td>Bronchopneumonia</td>
<td>Ganglioside (G₉₉); Vacuolated histiocytes</td>
<td></td>
</tr>
<tr>
<td>Batten-Spielmeyer-Vogt</td>
<td>4 yr.</td>
<td>16 yr.</td>
<td>Pneumonia</td>
<td>Lipofuscin</td>
<td></td>
</tr>
<tr>
<td>Batten-Spielmeyer-Vogt</td>
<td>5 yr.</td>
<td>22 yr.</td>
<td>Sepsis</td>
<td>Lipofuscin</td>
<td></td>
</tr>
<tr>
<td>Batten-Spielmeyer-Vogt</td>
<td>7 yr.</td>
<td>21 yr.</td>
<td>Pneumonia</td>
<td>Lipofuscin</td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

There was good agreement between the amounts of lipofuscin revealed by the different staining methods and fluorescence microscopy. The results are listed in Table II and Fig. 2. The amount of lipofuscin in the control cases closely paralleled that found by Brody in his study of deposition of lipofuscin in the human cerebral cortex. The very small amount of lipofuscin found in the myocardium in the control cases was in accordance with the findings of Strehler et al. (1959) in a study of pigment accumulation in human myocardium.

Only the juvenile cases of amaurotic idiocy showed a definite increase of lipofuscin in the cortical neurones (Fig. 3b). In the juvenile case of Gaucher’s disease there appeared to be a slight increase, but the method does not seem to permit any definite conclusions. In the nerve cells of the inferior olive, a large amount of lipofuscin was also seen in the infantile case of amaurotic idiocy (Fig. 4a). In the nerve cells of the dentate nucleus, large amounts of lipofuscin were found not only in the infantile and juvenile cases of amaurotic idiocy, but also in the two cases of metachromatic leucodystrophy, while only scanty amounts were found in the control cases.

In juvenile amaurotic idiocy the glial cells and macrophages contained large amounts of lipofuscin. This was also seen in the infantile form even in the cerebral cortex, where the nerve cells contained only scanty amounts (Fig. 3a). Lipofuscin occurred profusely in the glial cells and macrophages of the white matter in the two cases of metachromatic leucodystrophy (Fig. 4b) and in smaller amounts in scattered areas of the cerebral white matter in the case of globoid body leucodystrophy.

In the cases of juvenile amaurotic idiocy large amounts of lipofuscin were found in the myocardium, liver (Fig. 5b), and spleen. In the infantile form moderate amounts were found in reticulo-histiocytic cells of the spleen (Fig. 5a) and liver. In

TABLE II

AMOUNT OF LIPOFUSCIN FOUND AT NECROPSY

<table>
<thead>
<tr>
<th>Disease</th>
<th>Heart</th>
<th>Liver</th>
<th>Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niemann-Pick</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gaucher infantile</td>
<td>—</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gaucher juvenile</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>Metachromatic leucodystrophy</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Krabbe</td>
<td>—</td>
<td>+</td>
<td>+ (+)</td>
</tr>
<tr>
<td>Tay-Sachs</td>
<td>—</td>
<td>+</td>
<td>+ (+)</td>
</tr>
<tr>
<td>Batten-Spielmeyer-Vogt</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>Control cases</td>
<td>+ (+)</td>
<td>— (+)</td>
<td>— (+)</td>
</tr>
<tr>
<td></td>
<td>+ moderate amounts</td>
<td>+ large amounts</td>
<td>+ + very large amounts</td>
</tr>
</tbody>
</table>
Occurrence of lipofuscin in inherited metabolic disorders affecting the nervous system

Cerebral cortex

N-P: Niemann-Pick
G: Gaucher
MLD: Metachromatic leucodystrophy
GLD: Globoid body leucodystrophy
T-S: Tay-Sachs
B-Sp-V: Batten-Spielmeyer-Vogt

FIG. 2. Histogram illustrating amounts of lipofuscin in the cerebral cortex, the inferior olive, and the dentate nucleus in the diseases studied.

FIG. 3a. Infantile amaurotic idiocy. Precentral gyrus showing autofluorescent material in glial cells. The greatly swollen nerve cells contain no or very weakly fluorescent material.

FIG. 3b. Juvenile amaurotic idiocy. Precentral gyrus. Fluorescent material in both nerve and glial cells.

the other cases no increase of lipofuscin was found in the visceral organs examined.

DISCUSSION

No definite conclusion has, as yet, been reached concerning the genesis and nature of lipofuscin. Findings have been presented as indicating a functional role of these granules in the neuronal metabolism during ageing (Hyden and Lindström, 1950; Hydén, 1960) or signifying neurosecretory activity (Issidorides and Shanklin, 1961). However it has also been suggested that lipofuscin is merely a degradation product of lipids, the yellow auto-fluorescence being due to polymerized unsaturated fatty acids (Pearse, 1960; Friede, 1962; Gedigk and Pioch, 1965). The lysosome concept put forward recently suggests that lipofuscin is included in these 'digestive' organelles (Essner and Novikoff, 1960).

Zeman and Albert (1963), using a fluorescence microscope, found no lipofuscin in the cortex of infantile amaurotic idiocy. In the present case of this disease only scanty amounts of lipofuscin were found in the cortical neurones, but large amounts in the glial cells and macrophages. By analogy with electron microscopic studies (Terry and Weiss, 1963; Wallace, Volk, and Lazarus, 1964) it is suggested that this accumulation may reflect a degradation of neuronal lipids occurring in these cells (Eeg-Olofson, Kristensson, Sourander, and Svennerholm, 1966). In 'lipo-
FIG. 4a. Infantile amaurotic idiocy. Dentate nucleus. Fluorescent material in both nerve cells and glial cells.

FIG. 4b. Metachromatic leucodystrophy. Cerebellar white matter. Fluorescent material in granular cells.

FIG. 5a. Infantile amaurotic idiocy. Spleen. Fluorescent material in reticulohistiocytic cells.

FIG. 5b. Juvenile amaurotic idiocy. Liver. Fluorescent material in Kupffer cells and liver parenchymal cells.
Occurrence of lipofuscin in inherited metabolic disorders affecting the nervous system

philic nuclei' (Obersteiner, 1912), such as the inferior olive and dentate nucleus, large amounts of lipofuscin were found in the nerve cells, suggesting that degradation of the neuronal lipids may occur in neurones, too. Significant amounts of lipofuscin were also noticed in reticulo-endothelial cells of liver and spleen. It has recently been shown by Svennerholm (Svennerholm and Sourander, 1965; Egg-Olofson et al., 1966) that the ganglioside stored in the neurones in Tay-Sachs disease also accumulates in these organs. It is possible that a disturbed metabolism of gangliosides may lead to concomitant formation of lipofuscin not only in brain but also in the liver and spleen.

In adult cases of metachromatic leucodystrophy Diezel (1962) observed lipofuscin in granular cells of the white matter. In the present two cases of infantile metachromatic leucodystrophy a great many cells containing lipofuscin were distributed throughout the white matter of the brain. Nerve cells of the dentate nucleus were found to contain both sulphate and lipofuscin. The occurrence of lipofuscin in some neurones and granular cells in metachromatic leucodystrophy may be explained as a consequence of a disturbed metabolism of glycerophospholipids caused by accumulation of sulphatides. Glycerophospholipids are rich in polyunsaturated fatty acids, which are readily oxidized, polymerized, and finally bound to the tissue structure as lipofuscin (Svennerholm and Sourander, 1965).

It is known from light microscopic studies that lipofuscin accumulates in cortical nerve cells in juvenile amaurotic idiocy (e.g., Sjövall, 1934; Zeman and Albert, 1963). Sjövall compared this accumulation with the process of senile involution and regarded it as a sign of premature ageing of the neurones. Sjövall also found an accumulation of a similar substance in lymph nodes and spleen and suggested that juvenile amaurotic idiocy was a generalized metabolic disorder. The finding of large amounts of lipofuscin in the visceral organs in the present cases of this disease, already described in a previous study (Kristensson, Rayner, and Sourander, 1965), supports this opinion.

In an electron microscopic study of one case of juvenile amaurotic idiocy, Gonatas, Terry, Winkler, Korey, Gomez, and Stein (1963) found in the cytoplasm of neurones and glial cells an increased number of lysosome-like bodies, lipofuscin, and an unusual organelle called a membrano-vesicular body. Intermediate forms, suggestive of transformations from lysosomes to the membrano-vesicular body to lipofuscin, were also seen. These authors assumed that the neuronal accumulation of lipofuscin was secondary to the degradation of a postulated abnormal lipid, with an ultrastructure corresponding to the membrano-vesicular body.

The accumulation of lipofuscin in neurones and cells of visceral organs in juvenile amaurotic idiocy is more pronounced than in any other of the diseases investigated. This may be due partly to the long duration of the disease and partly to the character of the enzymatic lesion(s).

SUMMARY

The occurrence of lipofuscin in the brain, heart, liver, and spleen was studied in cases of Niemann-Pick disease, Gaucher's disease, metachromatic leucodystrophy, globoid body leucodystrophy, infantile amaurotic idiocy, and juvenile amaurotic idiocy. Although significant amounts of lipofuscin were found in the cases of infantile amaurotic idiocy and metachromatic leucodystrophy, the cases of juvenile amaurotic idiocy were distinguished by an abundant deposit of lipofuscin in neurones and cells of visceral organs. By analogy with, for example, electron-microscopic studies, it is proposed that the accumulation of lipofuscin may reflect a disturbed degradation of lipids rich in polyunsaturated fatty acids. The significance of the pronounced accumulation of lipofuscin in juvenile amaurotic idiocy is briefly discussed.

REFERENCES


Occurrence of lipofuscin in inherited metabolic disorders affecting the nervous system
Krister Kristensson and Patrick Sourander

J Neurol Neurosurg Psychiatry 1966 29: 113-118
doi: 10.1136/jnnp.29.2.113

Updated information and services can be found at:
http://jnnp.bmj.com/content/29/2/113.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/