Anterior interbody fusion for cervical osteomyelitis
Reversal of quadriplegia after evacuation of epidural spinal abscess

A. D. BARTAL, J. SCHIFFER, Y. D. HEILBRONN, AND M. YAHEL

From the Departments of Neurological Surgery, Ichilov Government Hospital, Tel-Aviv Medical Center, and Neurology, Rambam Government Hospital, Haifa, Israel

SUMMARY Interbody fusion for stabilization of the cervical spine after osteomyelitic destruction of the body of C5 vertebra is reported in a patient with quadriplegia and sphincter disturbances secondary to an epidural abscess. The successful union of the bone graft along with complete neurological recovery after anterior decompression and evacuation of the epidural mass seem to justify the procedure.

The management of cervical osteomyelitis complicated by spinal epidural abscess was reviewed in a number of papers (Allbrook, 1949; Durity and Thompson, 1968; Hutton, 1956; Rimalowski and Aronson, 1968), stressing the extreme urgency of the condition and the generally disappointing results of surgery. The standard posterior approach by laminectomy was generally used to decompress the spinal cord.

When, however, the epidural abscess develops in association with a compression fracture and dislocation of the vertebral body due to osteomyelitic destruction as in the following case, the posterior approach is obviously inadequate for a thorough debridement. The successful treatment of an epidural spinal abscess complicated by osteomyelitic destruction of the C5 vertebral body by the anterior approach is presented. An autogenous bone graft was used to fill the gap caused by the removal of the destroyed vertebral body and adjacent discs. The satisfactory union of the bone graft and the remarkable neurological recovery prompted this communication.

CASE REPORT
The patient was a 26 year old soldier wounded during action by bazooka fragments in the face, neck, shoulders, and right upper arm. Tracheostomy and enucleation of the right eye had been performed at another hospital along with local cleansing of the wounds under penicillin and streptomycin cover. Radiographs of the cervical spine at the time of admission (7 June 1969) showed multiple metallic foreign body fragments with one fragment anterior to the anterosuperior margin of C5 vertebra. There was questionable minimal swelling of the prevertebral soft tissues at this level (Fig. 1). At this time the patient complained of neck pain radiating to both shoulders and upper arms. Re-examination of the cervical spine on 22 June 1969 showed definite erosion of the anterior margin of C5 vertebral body with marked anterior displacement of the previously described metallic fragment (Fig. 2). The patient left hospital on 29 June 1969.

FIG. 1. Lateral projection of the cervical spine (7 June 1969) showing multiple metallic foreign body fragments in the soft tissues with a single layer fragment adjacent to the anterior superior aspect of C5 vertebra. There is probably minimal widening of the prevertebral soft tissues.
He was readmitted on 13 July 1969, because of progressive neurological deterioration characterized by bilateral paraesthesias and pain in both upper extremities, absent biceps and triceps reflexes bilaterally, weakness of both shoulders, arms and hands, spastic paraparesis, and double sphincter weakness.

Myelography on 15 July 1969 (Fig. 3) demonstrated a pathological fracture of C5 vertebra with a complete block and posterior displacement of the Pantopaque column at the upper border of C6 vertebra, indicating an abscess in the anterior extradural space. At the time of myelography, lumbar puncture disclosed xanthochromic spinal fluid with a protein of 150 mg/100 ml. The patient was placed in skeletal traction and transferred to the Neurosurgical Department at Ichilov Hospital on 16 July 1969.

Physical examination upon arrival showed a thin, alert cooperative male with a healed tracheostomy scar and enucleation of the right eye. There were also multiple skin scars from shell fragments. His temperature was 38°C, pulse rate 100/min. The remainder of the routine physical examination was normal.

NEUROLOGICAL EXAMINATION The cranial nerves were intact. There was atrophy of the proximal arm muscles and a complete lower motor neurone
paralysis of both arms without sensory disturbances, along with weak residual movements of the shoulders. The deep tendon reflexes in the arms were normal. There was spastic paraparesis with more pronounced weakness of the left leg, active tendon jerks in the legs with sustained patellar and ankle clonus, and bilateral Babinski signs. Superficial abdominal reflexes were present bilaterally.

LABORATORY DATA The blood showed a sedimentation rate of 56/85 mm (Westergren), haemoglobin 10.9 g/100 ml., haematocrit 36%, WBC 8,300/mm³ with a normal differential, glucose 110 mg/100 ml., blood urea nitrogen 44 mg/100 ml., chloride 108 m-equiv/l., sodium 152 m-equiv/l., potassium 4.2 m-equiv/l. The urinalysis was normal. On admission the patient was given penicillin 12 Mu intramuscularly, streptomycin 0.5 g b.d. and erythromycin 3 g intravenously.

On the night of admission he was operated upon under general, endotracheal anaesthesia. A transverse skin incision was made and, after dissection of the neck muscles, the trachea and oesophagus were retracted medially and the anterior surface of the vertebrae exposed. Upon opening the oedematous, bulging anterior longitudinal ligament, several pockets of pus were encountered in amorphous yellow-red granulomatous tissue which was dissected free to uncover the anterior surface of the vertebrae. Fragments of destroyed bone of the body of C5 vertebra, disc fragments, and detritus were radically curetted out until healthy cancellous bony surfaces of C4 and C6 vertebrae were seen. Several minute pockets of pus and a filmy fibrinous coating were removed from the anterior surface of the dura mater.

A large iliac bone graft, modelled in the form of a vertebral body, was used to fill the empty space between the surfaces of the partially resected anterior C4 to C6 vertebral bodies (Fig. 4). The wound was closed in anatomical layers and a soft Penrose drain left in place for 12 hours. On the following day the bacteriological culture showed coagulase positive staphylococcus aureus, which was resistant to penicillin, sulphonamides, and achromycin, relatively resistant to streptomycin, and sensitive to chloromycetin, pyostacin, and celbenin. He was given chloromycetin 1.0 g three times daily. Penicillin, erythromycin, and streptomycin were discontinued on the fifth postoperative day. Subsequently, varying regimes of chloromycetin, Penbritin, colimycin, and erythromycin were given for six months, the changes being made periodically without bacteriological control. The patient was afebrile and in good general condition from the sixth postoperative day.

Wound drainage stopped after one week and the wound healed with a clean scar. Marked neurological improvement was observed after the first

FIG. 5. Re-examination approximately five weeks after insertion of the graft (24 August 1969) showing some early resorption.

FIG. 4. Radiograph of the cervical spine (18 July 1969) showing the buttressing bone graft at C5 vertebra.
postoperative week. The skeletal traction was removed eight weeks postoperatively and two weeks later the patient was ambulatory with a firm chin–neck support. Neurological improvement continued and three months postoperatively no neurological deficit could be elicited. Control films of the cervical spine (Fig. 5) showed the expected initial resorption of the graft with subsequent recalcification of new bone formation and bridging between vertebrae C4 and C5. Radiographs taken in December 1970 showed firm bridging of the implanted bone graft by new bone (Fig. 6).

DISCUSSION

Autogenous bone graft replacement in malignant disease of the cervical spine and tuberculous spondylitis with cord compression has been successfully accomplished in the past (Hodgson, Stock, Fang, and Ong, 1960; Mullan, Naunton, Hekmat-Panah, and Vailati, 1966; Seres, 1968). No reference was found in the available literature to successful use of this procedure in an actively osteomyelitic wound bed. Placing of a bone graft in these circumstances carries a high risk, since it may complicate the osteomyelitic process.

The successful union of the graft in our case was probably due to a number of factors: (1) careful eradication of any visible infected granulomatous and necrotic tissue; (2) exposure of healthy cancellous bony surfaces of the adjacent vertebral bodies to the graft; (3) prolonged use of antibiotics.

Although stainless steel (Senning, Weber, and Yasargil, 1962) or acrylic (Scoville, Palmer, Samra, and Chong, 1967) may theoretically be more suitable graft materials in the presence of infection, we elected to do the interbody fusion with an autogenous bone graft because it is less likely to act as an inert foreign body.

The authors acknowledge gratefully the help of Dr. Robert Shapiro, Yale University, New Haven, Conn., in the preparation of the paper and in the interpretation of the radiographs.

REFERENCES

Anterior interbody fusion for cervical osteomyelitis: Reversal of quadriplegia after evacuation of epidural spinal abscess

A. D. Bartal, J. Schiffer, Y. D. Heilbronn and M. Yahel

J Neurol Neurosurg Psychiatry 1972 35: 133-136
doi: 10.1136/jnnp.35.1.133

Updated information and services can be found at:
http://jnnp.bmj.com/content/35/1/133

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/