Primary sleep apnoea syndrome

SUDHANSU CHOKROVERTY, JOHN T SHARP

From the Department of Neurology, CMDNJ-Rutgers Medical School, Piscataway, and Neurology Service, VA Medical Center, Lyons, NJ; the Departments of Medicine and Neurology, VA Medical Center, Hines, and Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA

SUMMARY Polygraphic study in 18 men with the sleep apnoea syndrome showed central, upper airway obstructive, and mixed apnoeas. Fifty per cent of the total apnoea time was central, 33% was obstructive, and 17% was mixed. Apnoeic episodes were accompanied by oxygen desaturation, relative bradycardia and hypotonia of orofacial muscles innervated by ponto-medullary neurons. During regular breathing these muscles revealed tonic and phasic inspiratory EMG activities. The data suggest that the primary sleep apnoea syndrome results from a dysfunction of the central control of breathing.

In 1907 Osler first spoke of an association between obesity and "an uncontrollable tendency to sleep—like the fat boy in Pickwick." Nearly 50 years later Auchincloss et al and Burwell and associates directed attention to the association of sleep-related respiratory dysrhythmia and obesity. Subsequently many reports of sleep apnoea syndrome with and without obesity appeared. When sleep apnoea is associated with an underlying cause, such as brain stem affection, disorder of the neuromuscular apparatus of respiration, structural lesion of the upper airway, chronic obstructive lung disease, it is termed secondary sleep apnoea syndrome. When no cause is found, the term primary sleep apnoea syndrome seems appropriate.

Three types of sleep-related respiratory dysrhythmia have been described: (1) central apnoea with suppression of diaphragmatic and intercostal muscle activity and absence of air exchange through the nose or mouth, (2) upper airway obstructive apnoea during which there is no air exchange detected by the oronasal thermistors, but the diaphragmatic and intercostal muscle activities persist, and (3) mixed apnoea during which there is an initial period of central apnoea followed by a period of upper airway obstructive apnoea before resumption of regular breathing. Despite numerous publications the pathogenesis of the sleep apnoea syndrome remains unknown. At first it was thought that obesity was the primary factor causing hypoventilation, initially only during sleep but later even in wakefulness. Since the landmark paper by Gastaut et al directing attention to the role of the tongue in the genesis of obstructive apnoea in sleep apnoea, the investigative emphasis shifted toward events occurring during sleep and control of breathing.

Clinical observation, polygraphic recordings and pulmonary function studies provide evidence that the primary sleep apnoea syndrome results from a dysfunction of the central control of breathing as we have postulated previously. The polygraphic findings of predominantly central apnoea are contrary to previous observations of mainly obstructive apnoea in these patients. The present study further confirms that multiple orofacial muscles receive phasic inspiratory bursts and that during apnoea there is hypotonia not only of genioglossus as shown by other investigators but also of other muscles in and around the mouth innervated by pontomedullary neurons. Finally, because of close anatomical contiguity of the respiratory, hypnogenic and baroreceptor neurons in the region of the nucleus tractus solitarius, we tested autonomic functions in four patients.

Patients

We studied 18 men, ages 29-66 years (mean = 49 yrs). All patients were referred because of excessive daytime somnolence lasting from a few minutes to 2 hours for the
primary syndrome

Methods

1 Pulmonary function study Spirometric measurements were performed according to a standard method used in this pulmonary function laboratory. All values were corrected to body temperature and pressure saturated with water vapour (BTPS). Oxygen tension (P\textsubscript{O2}) and carbon dioxide tension (P\textsubscript{CO\textsubscript{2}}) of arterial blood were determined. Hypercapnic and hypoxic ventilatory responses were measured in seven patients (cases 3, 5-7, 9, 10 and 16) using a standard technique. Patients breathed 5%-8.5% CO\textsubscript{2} in room air until ventilation had reached a constant value (15 to 20 minutes), and then P\textsubscript{CO\textsubscript{2}} and minute ventilation at standard BTPS were measured. Similar measurements of minute ventilation and P\textsubscript{O\textsubscript{2}} were made before and during breathing of 10 to 11% oxygen in nitrogen for 10 to 11 minutes.

4 Autoonomic function study In four patients (cases 3, 7, 8 and 10) circulatory responses (blood pressure and heart rate) after tilting the table upward (30° to 60° tilt) and immersion of one hand in ice-cold water were determined. The Valsalva ratio (ratio of the longest R-R to the shortest R-R interval) was measured by the method of Levine. The electrocardiogram was monitored continuously by a chest lead. In two patients plasma renin activity in supine and erect (60° for 30 minutes) positions was also determined by a radioimmunoassay method.

Results

A POLYGRAPHIC DATA

1 Breathing pattern Polygraphic study recorded repeated episodes of apnoea during sleep beginning generally in expiration. In one patient (case 10) three periods of central apnoea lasting for 15-20 seconds were also noted during relaxed wakefulness. Tables 2 and 3 summarise the polygraphic data. There were 17 to 504 episodes of apnoea during 50 to 579 minutes of recording. After pooling the polygraphic data from all patients we found that the mean number of apnoeic episodes per hour of sleep was 61 with

<table>
<thead>
<tr>
<th>Case No</th>
<th>Age (yr)</th>
<th>Height (inches)</th>
<th>Weight (pounds)</th>
<th>Blood pressure (mm Hg)</th>
<th>Duration of hypersomnia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31</td>
<td>70</td>
<td>275</td>
<td>130/90</td>
<td>6 mth</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>72</td>
<td>284</td>
<td>130/80</td>
<td>4 yr</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>68</td>
<td>238</td>
<td>130/90</td>
<td>3 mth</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>72</td>
<td>298</td>
<td>174/100</td>
<td>2½ yr</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>66</td>
<td>161</td>
<td>120/84</td>
<td>1½ yr</td>
</tr>
<tr>
<td>6</td>
<td>47</td>
<td>70</td>
<td>130</td>
<td>130/80</td>
<td>5 mth</td>
</tr>
<tr>
<td>7</td>
<td>57</td>
<td>69</td>
<td>260</td>
<td>170/105</td>
<td>10 yr</td>
</tr>
<tr>
<td>8</td>
<td>58</td>
<td>69</td>
<td>278</td>
<td>180/94</td>
<td>3 yr</td>
</tr>
<tr>
<td>9</td>
<td>62</td>
<td>67</td>
<td>171</td>
<td>140/80</td>
<td>3 mth</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>74</td>
<td>260</td>
<td>150/100</td>
<td>2 yr</td>
</tr>
<tr>
<td>11</td>
<td>45</td>
<td>69</td>
<td>210</td>
<td>140/70</td>
<td>32 yr</td>
</tr>
<tr>
<td>12</td>
<td>51</td>
<td>72</td>
<td>220</td>
<td>170/110</td>
<td>1 yr</td>
</tr>
<tr>
<td>13</td>
<td>54</td>
<td>66</td>
<td>190</td>
<td>160/100</td>
<td>5 yr</td>
</tr>
<tr>
<td>14</td>
<td>47</td>
<td>77</td>
<td>275</td>
<td>120/80</td>
<td>28 yr</td>
</tr>
<tr>
<td>15</td>
<td>29</td>
<td>76</td>
<td>229</td>
<td>118/72</td>
<td>3 yr</td>
</tr>
<tr>
<td>16</td>
<td>52</td>
<td>69</td>
<td>170</td>
<td>130/80</td>
<td>6 mth</td>
</tr>
<tr>
<td>17</td>
<td>43</td>
<td>74</td>
<td>290</td>
<td>110/70</td>
<td>5 mth</td>
</tr>
<tr>
<td>18</td>
<td>50</td>
<td>70</td>
<td>370</td>
<td>170/100</td>
<td>2 yr</td>
</tr>
</tbody>
</table>
Table 2 Polygraphic data in 18 patients with primary sleep apnoea syndrome

<table>
<thead>
<tr>
<th>Case no</th>
<th>Duration recording (min)</th>
<th>Apnoeic episodes</th>
<th>Upper airway obstructive</th>
<th>Mixed</th>
<th>Total no</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>% of total apnoea time</td>
<td>Duration (s) M ± SE</td>
<td>% of total apnoea time</td>
<td>Duration (s) M ± SE</td>
</tr>
<tr>
<td>1</td>
<td>51</td>
<td>24.0 ± 0.1</td>
<td>4.5 ± 0.9</td>
<td>14.5 ± 0.9</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>153</td>
<td>25.4 ± 0.6</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>231</td>
</tr>
<tr>
<td>3</td>
<td>202</td>
<td>14.6 ± 0.4</td>
<td>20.8 ± 0.9</td>
<td>25.9 ± 0.5</td>
<td>252</td>
</tr>
<tr>
<td>4</td>
<td>197</td>
<td>16.8 ± 1.0</td>
<td>23.0 ± 1.3</td>
<td>24.0 ± 1.2</td>
<td>111</td>
</tr>
<tr>
<td>5</td>
<td>86</td>
<td>20.0 ± 1.7</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>202</td>
<td>24.8 ± 1.4</td>
<td>0 ± 0</td>
<td>12.4 ± 0.8</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>147</td>
<td>12.7 ± 0.2</td>
<td>11.6 ± 1.1</td>
<td>23.9 ± 1.6</td>
<td>317</td>
</tr>
<tr>
<td>8</td>
<td>477</td>
<td>13.4 ± 0.2</td>
<td>28.0 ± 1.8</td>
<td>26.9 ± 0.8</td>
<td>310</td>
</tr>
<tr>
<td>9</td>
<td>440</td>
<td>25.7 ± 0.6</td>
<td>30.4 ± 3.3</td>
<td>25.6 ± 1.1</td>
<td>317</td>
</tr>
<tr>
<td>10</td>
<td>579</td>
<td>15.4 ± 0.4</td>
<td>24.4 ± 0.7</td>
<td>34.2 ± 1.4</td>
<td>504</td>
</tr>
<tr>
<td>11</td>
<td>150</td>
<td>22.1 ± 1.1</td>
<td>32.3 ± 1.2</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>70</td>
<td>13.7 ± 0.3</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
<td>87</td>
</tr>
<tr>
<td>13</td>
<td>75</td>
<td>16.7 ± 0.6</td>
<td>0 ± 0</td>
<td>16.7 ± 1.4</td>
<td>78</td>
</tr>
<tr>
<td>14</td>
<td>50</td>
<td>0 ± 0</td>
<td>17.7 ± 0.9</td>
<td>0 ± 0</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>88</td>
<td>11.3 ± 0.6</td>
<td>14.0 ± 1.3</td>
<td>134 ± 0.9</td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td>60</td>
<td>18.9 ± 1.4</td>
<td>36.1 ± 1.6</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>70</td>
<td>11.6 ± 0.4</td>
<td>13.1 ± 0.5</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>130</td>
<td>17.7 ± 0.8</td>
<td>23.0 ± 1.4</td>
<td>77</td>
<td></td>
</tr>
</tbody>
</table>

M ± SE: Mean ± Standard error of mean
0: Nil —; Not determined

Table 3 Polygraphic data in 18 patients with primary sleep apnoea syndrome

<table>
<thead>
<tr>
<th>Case no</th>
<th>Apnoeic episodes</th>
<th>Oxygen saturation (SaO₂,%)</th>
<th>Heart rate M ± SE</th>
<th>Stages of sleep (% of total sleep)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number per hour of sleep</td>
<td>Total duration (min)</td>
<td>Highest</td>
<td>Lowest</td>
</tr>
<tr>
<td>1</td>
<td>129</td>
<td>28</td>
<td>96</td>
<td>66</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
<td>112</td>
<td>96</td>
<td>68</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>87</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td>41</td>
<td>90</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>59</td>
<td>95</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>20</td>
<td>96</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>70</td>
<td>94</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>57</td>
<td>92</td>
<td>98</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>56</td>
<td>120</td>
<td>97</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>71</td>
<td>193</td>
<td>96</td>
<td>66</td>
</tr>
<tr>
<td>11</td>
<td>61</td>
<td>49</td>
<td>96</td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td>87</td>
<td>20</td>
<td>96</td>
<td>66</td>
</tr>
<tr>
<td>13</td>
<td>78</td>
<td>17</td>
<td>97</td>
<td>82</td>
</tr>
<tr>
<td>14</td>
<td>60</td>
<td>10</td>
<td>96</td>
<td>66</td>
</tr>
<tr>
<td>15</td>
<td>35</td>
<td>10</td>
<td>95</td>
<td>76</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>14</td>
<td>98</td>
<td>88</td>
</tr>
<tr>
<td>17</td>
<td>44</td>
<td>15</td>
<td>96</td>
<td>66</td>
</tr>
</tbody>
</table>

M ± SE: Mean ± Standard error of mean
0: Nil —; Not determined

a range of 13 to 129; the mean duration of central apnoea was 17.9 seconds; the mean duration of obstructive apnoea was 22.9 seconds; and the mean duration of mixed apnoea was 27.2 seconds. Apnoeic episodes of less than 10 seconds were not considered significant.

We observed central, upper airway obstructive and mixed apnoeas (table 2; figs 1-6). On many occasions periodic central apnoea resembled the waxing and waning pattern of Cheyne-Stokes respiration. Ten patients had predominantly central apnoea (cases 1, 2, 6-9, 11-13, and 16), six had obstructive apnoea (cases 4, 5, 10, 14, 17 and 18) and two had mixed (cases 3 and 15) apnoea. In patient 12 apnoea was purely central whereas in patient 14 apnoea was purely obstructive in type. The pooled data showed that 50% of the total apnoea time in all patients was central; 33% was obstructive and 17% was mixed. It is notable that compared with the day-time study the all night recording in cases 7-9 showed...
Primary sleep apnoea syndrome

Fig 1 Polygraphic recording of two channels of EEG (C3-A1, C4-A2), electromyograms (EMG) of orbicularis oris (ORIS), submental (SUBMENT), mentalis (MENT) and intercostal (INT) muscles, vertical electro-oculogram (EOGv), electroglossogram (EGG), nasal and oral airflow and abdominal pneumogram (ABD PNEUMO) in case 2. Note central apnoea of 26 s and portion of a second period of central apnoea during stage 11 non-REM sleep. In addition to the phasic inspiratory (downward deflection in airflow and pneumogram) bursts in the EMG and EGG there are occasional bursts of muscle activities in expiration. Electrocardiogram is shown in all EMG and EGG.

Fig 2 Polygraphic recording in a patient with sleep apnoea (case 3) showing 4 channels of EEG (C3-A1, C4-A2, O1-A1, O2-A2), vertical electro-oculogram (EOGv), electromyograms (EMG) of mental (MENT), submental (SUBMENT), orbicularis ORIS and intercostal (INT) muscles, electroglossogram (EGG), electropharyngogram (EPG), nasal and oral airflow, abdominal pneumogram (ABD PNEUMO) and oxygen saturation by ear oximeter (EAR OX S\textsubscript{a}O\textsubscript{2} %). During the left half of the recording the patient has obstructive apnoea and the EEG shows stage 1 non-REM sleep. Arousal is signalled by resumption of nasal airflow, increased phasic inspiratory (upward deflection in airflow and pneumogram) bursts in EMG, EGG and EPG and tongue movements in EGG and EPG. Note decrease of saturation from 90% to 70% during apnoea.
Recording of EEG (C₃-A₁, C₄-A₂), electromyogram (EMG) of orbicularis oris (ORIS), submental (SUBMENT), mental (MENT) and intercostal (INT) muscles, vertical electrooculogram (EOG), electroglossogram (EGG), nasal and oral airflow and abdominal pneumogram (ABD PNEUMO) in case 2, during stage II non-REM sleep. Note 27 s of mixed apnoea in the left hand side of the tracing and 13 s of central apnoea in the right hand side of the recording. Note also the phasic inspiratory (downward deflection in nasal airflow and pneumogram) bursts in the EMG and EGG.

Same case as in fig 3. Note a portion of an episode of mixed apnoea (only 14 s of a total duration of 36 s are shown) during stage I non-REM sleep followed by resumption of normal breathing, EEG arousal and increased muscle activities. Arrow points to phasic muscle activities during inspiration. Ear oximeter (OX) shows oxygen desaturation during apnoea.
marked increase in the number of obstructive apnoeas and decrease of central apnoeas.

Apnoeic episodes occurred in all stages of sleep. Most, however, were recorded during non-rapid eye movement (non-REM) sleep stages I and II. Rapid eye movement (REM) sleep was recorded in patients 3, 8, 9 and 18 (table 3). REM sleep was accompanied by several episodes of central, mixed or obstructive apnoea (fig 5). In some recordings REM sleep was associated with regular breathing.

2 Electroencephalograms There were no focal or generalised slow waves and no epileptiform activities in the EEG of any patients. All attained non-REM stages I and II sleep and only patients 3, 8, 9 and 11 had brief periods of stages III and IV (table 2). Four patients (cases 3, 8, 9, 18) had REM sleep 40-50 minutes after onset of sleep. In most instances, EEG changes preceded the onset of apnoeic periods but occasionally these events were seen simultaneously. The termination of apnoea was signalled by K-complexes, alpha rhythm or a change from stage II to stage I EEG sleep pattern. Sometimes EEG changes preceded by 1 to 3 seconds the resumption of normal breathing after an episode of apnoea.

3 Oxygen saturation SaO_2 recorded from the ear oximeter showed a decrease of 10% to 46% during and immediately after apnoeic periods (table 3). The sudden rise of SaO_2 lagged behind the resumption of effective gas exchange as shown by a deflection in the thermistor tracings and pneumographs by about 6 to 12 seconds (figs 2 and 4) representing the circulation time from the lung to the ear where SaO_2 was being registered.

4 Heart rate In all patients each apnoeic episode was accompanied by relative bradycardia followed
reappeared during (figs 2-4). and frequently intense recruitment inspiratory phasic episodes of muscle activities with phase during the tonic activities stages sternomastoid EMG, finished II. appeared in 3; figs (table associated by obstructive deflection in breathing breathing in by relative tachycardia as normal breathing resumed (table 3; figs 2-4). Apnoea and sinus bradycardia were associated with ventricular extrasystole in two patients (cases 3 and 9) during non-REM and REM sleep.

5 Genioglossal EMG Two types of activities were observed in the genioglossal EMG during normal breathing in relaxed wakefulness and in sleep stages I and II: tonic and phasic. The tonic activities diminished slightly but did not disappear during non-REM sleep stages I and II. The phasic activities coincided with the inspiratory bursts in the intercostal and sternomastoid EMG, and were noted during the inspiratory phase of respiration (figs 1-6). One patient (case 2) also displayed occasional phasic muscle activities during expiration (fig 1). During episodes of central, mixed or obstructive apnoeas the tonic activities decreased considerably or disappeared (figs 1-4 and 6). The phasic activities ceased during central apnoea (figs 1, 3 and 4) but reappeared during obstructive apnoea with progressive recruitment during successive inspiratory efforts (figs 2-4). Tonic activities in the genioglossal EMG also ceased during REM sleep with or without apnoea (fig 5). During REM sleep without apnoea phasic inspiratory bursts were seen but these were less intense than those seen during non-REM sleep and frequently even the phasic activities ceased.

6 EMG of other orofacial muscles The EMG of the mentalis, submental, orbicularis oris and pharyngeal muscles displayed changes similar to those seen in the genioglossal muscles (figs 1-6). Rhythmic tongue movements were observed in the EGG and EPG during REM but not during non-REM sleep.

B THE RESPIRATORY MAGNETOMETER RECORDINGS
In nine patients (cases 1, 3-5, 7-10 and 16) the presence of upper airway obstruction was established from the respiratory magnetometer recording of thoracic and abdominal motion. Fig 7 shows magnetometer tracings of thoracic and abdominal movement taken from patient 10 with mixed apnoea.

Fig 6 Polygraphic recording in case 10. Note regular breathing accompanied by phasic inspiratory (upward deflection in airflow and pneumogram) bursts in all EMG and EGG during wake EEG preceded and followed by obstructive apnoea (only a small portion is shown in the tracing) during stage I non-REM sleep.

Fig 7 An example of mixed apnoea occurring during stage II non-REM sleep in case 10. Shown is a 20 s period of central apnoea (no respiratory efforts) followed by a 22 s period of obstructive apnoea. $S\text{O}_2$ refers to blood oxygen saturation via ear oximeter. The second line from top with vertical bracket labelled 40 cm H_2O represents oesophageal pressure, the equivalent of pleural pressure. Therm is a thermistor tracing indicating oronasal air flow. The bottom four tracings are magnetometer records of lateral and anteroposterior motion of the rib cage (RC) and abdomen (abd). The calibration is equal in all magnetometer channels and the vertical bracket labelled 2 cm indicates the deflection in all four channels corresponding to 2 cm of linear displacement of diameter change. Note that during the latter part of the apnoeic period the inspiratory effort produced outward motion (upward deflection) of the abdomen (AP) but simultaneous inward (downward) deflection of the rib cage (AP) representing obstructive apnoea. At the termination of apnoea the rib cage and abdominal motion became concordant moving in the same rather than in opposite directions.

C PULMONARY FUNCTION TESTS
The spirometric values for forced expiratory reserve volume, forced vital capacity, maximum voluntary ventilation, residual volume and functional residual
capacity were normal except in three patients (cases 3, 5, 18) showing evidence of mild obstructive lung disease. P_{O_2} and P_{CO_2} were also normal except for mild hypoxaemia in case 18 during wakefulness. Hypercapnic and hypoxic ventilatory responses showed normal increase of minute ventilation in all cases including the two patients (cases 3 and 5) showing evidence of mild obstructive lung disease.

D AUTONOMIC FUNCTION DATA

The tilt table study showed no orthostatic hypotension after tilting the table upward for 10-15 minutes; heart rate increased normally in the erect posture. The cold pressor test produced a normal rise of blood pressure and heart rate during the period of cold stress. The Valsalva ratio was normal. In summary, the results failed to show any functional abnormality of the baroreceptor reflex arc. Plasma renin activity was normal in the supine position and rose normally in the erect posture.

Discussion

CLINICAL ASPECTS

All patients exhibited characteristic clinical features of the sleep apnoea syndrome. These features and the polygraphic findings of absence of sleep onset REM clearly differentiate these patients from those with the narcolepsy syndrome. The incidence of obesity (61%: table 1) in our series is higher than that reported in the Stanford series. Weight reduction in four individuals (cases 7, 10, 14, 18) was associated with considerable symptomatic relief and reduction in the number of apnoeas during repeat polygraphic study, but periodic central apnoea persisted. However, improvement following tracheostomy (case 11) suggests that upper airway obstruction plays a major rôle in the production of symptoms. The incidence of hypertension (table 1) in our series is less than that reported by others.6

What is the cause of excessive daytime somnolence in sleep apnoea patients? It has been suggested that disturbed nocturnal sleep resulting from repeated arousals associated with recurring apnoeic episodes and oxygen desaturation is responsible for daytime hypersomnolence. Amelioration of symptoms after tracheostomy, which prevents periodic upper airway obstruction during sleep, supports this suggestion. However, Orr et al found no significant difference in the number of airway obstructions in symptomatic and asymptomatic sleep apnoea patients. The disappearance of daytime somnolence after tracheostomy and reports of sleep apnoea patients without daytime somnolence, cast doubt on the suggestion that upper airway obstructive apnoea}

ELECTROENCEPHALOGRAMS IN SLEEP APNOEA PATIENTS

Findings of abnormal sleep EEG patterns in sleep apnoea patients are in agreement with observations reported by others. Sleep was spent mostly in Stage II and partly in Stage I (table 3). Four patients (cases 3, 8, 9 and 18) went into REM stage 40 to 50 minutes after the onset of sleep during daytime polygraphic recording. One possibility is that these four patients belong to an intermediate category, that is in a borderland between narcolepsy and the sleep apnoea syndrome or a combination of the two. Another possibility is that the early onset REM periods resulted from sleep deprivation secondary to repetitive arousals at night.

EEG signs of sleep usually preceded cessation of breathing, and so apnoea was related to sleep. The simultaneous occurrence of EEG arousals and resumption of breathing suggests a common mechanism, such as a critical level of oxygen desaturation as indicated by the oximeter recordings. Sometimes EEG changes preceded resumption of normal breathing implying that the structures responsible for EEG arousals were more sensitive to hypoxia than the respiratory neurons. However, on several occasions the period of apnoea was brief and accompanied by mild oxygen desaturation (a difference of less than 10%) and so the resumption of breathing and EEG arousal could not always be related to hypoxia. It was suggested by Krieger and Kurtz that during obstructive apnoea proprioceptive stimuli from respiratory muscles resulting from ineffectual respiratory movements may be responsible for EEG arousals.

Apnoeas have been noted in normal individuals during both non-REM and particularly REM sleep, but the brevity and infrequent occurrence of the episodes, and the lack of excessive daytime somnolence differentiate these apparently normal individuals from sleep apnoea patients.

PATTERN OF BREATHING

Our polygraphic findings confirm the existence of central, obstructive and mixed apnoeas (figs 1-6) in these patients. The mean duration of obstructive or mixed apnoea was longer than that of central apnoea. Our findings of a purely central apnoea in one (case 12), purely obstructive in one (case 14) and predominantly central apnoea in 10 patients (table 2) differ from those reported by others. In most of the previous reports upper airway obstructive apnoea
was the predominant abnormality in sleep apnoea patients. In the present study approximately 50% of the total apnoea time was central.

It is noteworthy that in a previous communication based on the respiratory magnetometer study of sleep apnoea patients, we reported that 81% of all apnoeic episodes was purely obstructive. This apparent discrepancy between the two series may have been related to the fact that in the previous study a greater percentage of patients had all night recordings. The predominance of central apnoea in the present study may be due to the fact that we performed diurnal rather than nocturnal polygraphic recordings. As indicated above a comparison of the daytime and all night polygraphic data in cases 7-9 would tend to support this suggestion. Lugaresi et al and Kurtz and Krieger also stated that central apnoeas were more abundant during daytime than during nighttime recordings.

Genioglossal and Other Orofacial EMG in Sleep Apnoea Patients

There is increased genioglossal activity during inspiration and protrusion of the tongue forward (figs 1-6). On the other hand, negative intrathoracic pressure during inspiration would tend to pull the tongue backward toward the oropharynx. A disturbance of this balance between forward and backward forces (for example during genioglossal hypotonia) may promote upper airway obstructive apnoea. We found a general inhibition of tone not only in the genioglossus and pharyngeal muscles but also in many other muscles innervated by pontomedullary neurons during central, obstructive and mixed apnoeas (figs 1-6). We observed phasic inspiratory bursts in addition to the tonic activities in the EMG not only of the intercostal, sternocleidomastoid and genioglossus but also of the palato-pharyngeal, orbicularis oris, mentalis and submental muscles. Apparently, the motor neurons of all the above muscles seem to receive an automatic respiratory drive during inspiration. It has been suggested recently that the muscles of the upper airway are respiratory in nature. Trains of impulses with inspiratory periodicity and essentially synchronous with phrenic excitation have been recorded from the motor nerves to the tongue, pharynx and larynx. In a very real sense these upper airway muscles should be included among the inspiratory muscles. Simultaneous activation of the genioglossus and other orofacial muscles along with the inspiratory muscles suggests that the same neural mechanisms may be responsible for both actions.

What is the Site of Obstruction in Upper Airway Obstructive Apnoea?

There is no consensus of opinion in this respect. Gastaut et al favoured prolapse of the tongue backward as the mechanism of obstruction. The findings of Remmers et al and Harper and Sauerland support Gastaut’s original suggestion. The observations of Weitzman and co-workers favoured obstruction at the pharyngeal level. Lugaresi et al concluded that upper airway obstruction may result from collapse of the oropharyngeal walls due to hypotonia of the genioglossal and oropharyngeal muscles. Weitzman and associates suggested that there was a sphincter-like closure of the lateral and posterior pharyngeal walls, apparently by active muscle contraction. However, Severinghaus mentioned that the apparent sphincter-like closure could result from negative inspiratory pressure inside the airway. The EMG findings of Kurtz et al indicate obstruction at the laryngeal level with disappearance of laryngeal muscle tone.

Thus various investigators suggested hypotonia of genioglossal, pharyngeal or laryngeal muscles as the mechanism of airway obstruction. Present polygraphic findings suggest that loss of tone occurs not only in the genioglossus (figs 1-6), but also in the pharyngeal muscles (figs 2 and 4) contributing to the upper airway obstruction. The release of obstruction after pharyngeal intubation speaks in favour of oropharyngeal and not laryngeal obstruction. The previous observations by one of us (JT) that the pharyngeal occlusion occurred not only in the supine but also in the lateral body position indicates that genioglossal hypotonia alone is not responsible for pharyngeal obstruction in sleep apnoea syndrome.

Site of Lesion in Sleep Apnoea Syndrome

The diminished ventilatory response to CO\textsubscript{2} during normal sleep in man and a reduction of central respiratory drive during sleep in cats would suggest that there is a normal potential for respiratory failure in sleep. In patients with sleep apnoea syndrome there may be an exaggeration of this normal potential explaining central sleep apnoea. The recent report of episodes of apnoea and oxygen desaturation in apparently normal individuals would support this hypothesis. The resumption of normal breathing after both central and obstructive apnoeas is secondary to activation of brainstem respiratory and arousal mechanisms due to progressively rising hypoxic chemical stimuli during apnoea. Additionally, hypoxia will increase the phasic inspiratory activity of the tongue thereby favouring its forward motion to overcome airway obstruction. The following points would favour a central ventilatory dysfunction: the predominance
of central apnoea in our series; the presence of central apnoea often preceding obstructive apnoea (mixed apnoea); the persistence of central apnoea after tracheostomy in one of our patients; the unmasking of central apnoea by tracheal intubation which bypasses the pharyngeal obstruction; hypotonia not only of the genioglossus but also of multiple other muscles innervated by pontomedullary neurons during both central and obstructive apnoeas; and the occurrence of similar sleep-related respiratory arrhythmias in certain neurodegenerative diseases of CNS origin, such as the spinocerebellar degenerations, motor neuron disease, and the Shy-Drager syndrome, and in other CNS disorders, such as narcolepsy and poliomyelitis.

Phillipson commented that whether the underlying mechanisms for central or obstructive apnoeas were fundamentally different remains to be determined. We would agree with Kurtz and Krieger that central and obstructive apnoeas may have the same significance. Following evidence suggests that these two types of apnoea should not be strictly compartmentalised: in most patients central and obstructive apnoeas coexist; the predominance of central or obstructive apnoea may depend upon the timing of the study as stated above; orofacial muscle hypotonia was noted not only during central but also during obstructive apnoea; the decrease of activities observed during apnoea in the genioglossal and pharyngeal muscles as part of a general cranial motor inhibition would promote upper airway obstruction. Therefore both central and obstructive apnoeas result from central dysfunction and the type of apnoea may depend upon the balance between severity of inhibition of the brainstem respiratory and motor neurons; finally, the orofacial muscles appear to receive phasic inspiratory bursts behaving like respiratory muscles and this would support the idea that central and obstructive apnoeas differ in degree but not in kind.

If the primary sleep apnoea syndrome results from a defective central control of breathing, then what is the nature of this central ventilatory dysfunction? In non-REM sleep respiration is regulated primarily by the automatic or metabolic control system. Hence apnoea at this stage may result from derangement of this system. Phillipson and Sullivan suggested that apnoea in non-REM sleep may result from the following (1) dysfunctional brainstem respiratory neurons, (2) inadequate afferent input from central or peripheral chemoreceptors, and (3) active inhibition of inspiration due to increased inhibiting vagal stimuli. In patients with Pickwickian or obesity-hypoventilation syndrome, decreased chemosensitivity may support the first two suggestions of Phillipson and Sullivan. But in our patients hypoxic and hypercapneic ventilatory responses at least in the waking state were normal. This of course did not exclude decreased chemosensitivity of the respiratory neurons in sleep. We might point out that frequent and prolonged periods of apnoea after oxygen inhalation in sleep apnoea patients as described by us previously, and confirmed later by Motta and Guilleminault, would indirectly suggest that the hypoxic drive of the respiratory neurons was intact in these patients. Regarding the role of excessive vagal stimuli the slowing of the heart rate during apnoea in sleep apnoea patients may have resulted from increased vagal stimuli during apnoeic episodes. Guilleminault and co-workers found that atropine sulphate blunted sinus bradycardia and accentuated sinus tachycardia in five patients with sleep apnoea suggesting a direct vagal inhibition in these patients.

The voluntary respiratory control system is thought to be involved in the control of breathing during REM sleep, although there is no direct evidence to support this notion. Respiration is virtually unaffected by vagal stimuli in REM sleep. Hence active inhibition of inspiration by vagal stimuli cannot be responsible for apnoea in REM sleep, but increased vagal action may still be causing relative bradycardia in apnoea. The termination of apnoea may still be due to hypoxic stimuli because hypoxic chemosensitivity is intact during REM sleep. The presence of apnoea in both non-REM and REM sleep in our patients implies that both the respiratory control systems (voluntary and automatic) are somehow implicated. These two systems are closely interrelated in the lower brainstem and functionally integrated in the upper cervical spinal cord and a dysfunction in these regions might cause sleep apnoea syndrome. Structural lesions in these areas are known to cause sleep apnoea.

Finally, Phillipson suggested that a defect in the cortical arousal system may play a role in the sleep apnoea syndrome. Bowes and Phillipson provided experimental data in sleeping dogs to indicate that following brief periods of sleep fragmentation the arousal, ventilatory and airway responses to laryngeal stimulation were impaired. The presence of prolonged periods of apnoea accompanied by profound arterial desaturation in our patients with obstructive and mixed apnoeas may indicate an associated defect in the arousal system as suggested by Phillipson. On the other hand, the presence of many brief episodes of apnoea and mild arterial desaturation would suggest intact cortical arousal system.
WHAT IS THE ROLE OF OBESITY IN PRIMARY SLEEP APNOEA SYNDROME?

There is no doubt that severe obesity is a respiratory handicap\(^9\) causing reduction of functional residual capacity, vital capacity, maximal voluntary ventilation and varying degrees of hypoxaemia but normal arterial PaCO\(_2\) values.\(^9\) These factors alone are not, however, responsible for the sleep apnoea syndrome.\(^52\) It is noteworthy that severe obesity is quite common while obesity associated with hypoventilation and sleep apnoea is uncommon.\(^6\)\(^9\) It has also been shown that alveolar hypoventilation is not directly related to the degree of obesity.\(^9\) On the other hand one can speculate that in obese patients excessive accumulation of adipose tissue in the oropharyngeal region may influence the airway size and promote upper airway obstructive apnoea. Also a single case has been reported of fatty infiltration of the intercostal muscles and diaphragm in a patient who died of the obesity hypoventilation syndrome.\(^53\) Finally, functional improvement noted by us\(^4\)\(^9\) and others\(^8\) after weight loss would favour a rôle for obesity in the sleep apnoea syndrome. Thus it appears that obesity, although it may not play a primary rôle, acts as a secondary aggravating factor to the central dysfunction of ventilatory control.

In conclusion, the available data support the suggestion that the sleep-related central, obstructive and mixed apnoeas in the primary sleep apnoea syndrome most likely result from a central disturbance of ventilatory function. The study of Guilleminault et al\(^46\) while alluding to a previous suggestion\(^4\) and the physiological studies of the respiratory mechanics and timing by Martin et al\(^54\) also favoured a central nervous system dysfunction in upper airway obstructive sleep apnoea. The close contiguity of hypnogenic\(^19\) and respiratory neurons\(^18\) in the region of the nucleus tractus solitarius makes it the most probable site of a lesion causing sleep-related respiratory dysrhythmia. The nature of the lesion remains to be determined. In some it may be genetically determined\(^55\) or may be related to neurochemical alterations, possibly due to recurrent hypoxia.\(^7\)\(^25\) Further suggestions include impairment of growth hormone and prolactin secretory responses,\(^56\) and reduction of blood flow\(^57\) in the brain stem gray matter region. A lack of disturbance of circulatory homeostasis observed in four of our patients (cases 3, 7, 8 and 10) implies that the baroreceptor neurons,\(^20\) although closely related to respiratory and hypnogenic neurons\(^19\) in the nucleus tractus solitarius, may not necessarily be implicated in the primary sleep apnoea syndrome.

We thank Roger Duvoisin, MD, for reviewing the manuscript, the physicians on the Neurology Service, VA Medical Center, Hines, Illinois, for directing our attention to some of the patients, and Robert C Taylor for technical help.

This work was supported in part by USPHS grant No HL08789.

References
16. Harper RM, Sauerland EK. The role of the tongue in sleep apnea. In: Guilleminault C and Dement WC,
Primary sleep apnoea syndrome

22 Levin AE. A simple test of cardiac function based upon the heart rate changes induced by the Valsalva maneuver. Am J Cardiol 1966;18:90-9.
42 Phillipson EA. Quoted in discussion in reference no 6, p. 11.
51 Bowes G, Phillipson EA. Arousal, ventilatory and

Primary sleep apnoea syndrome.

S Chokroverty and J T Sharp

J Neurol Neurosurg Psychiatry 1981 44: 970-982
doi: 10.1136/jnnp.44.11.970

Updated information and services can be found at:
http://jnnp.bmj.com/content/44/11/970

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/