
Short report

The use of lisuride in the treatment of multiple system atrophy with autonomic failure (Shy-Drager syndrome)

A J Lees and Roger Bannister

From the National Hospital for Nervous Diseases, Queen Square, London

Summary In a controlled trial lisuride, an ergolene derivative with dopamine receptor agonist properties was given in maximum tolerated doses (2-4 mg/day) to seven patients with multiple system atrophy with autonomic failure (Shy-Drager syndrome). Improvement in Parkinsonian features occurred in only one patient and another patient who had been deriving marked benefit from levodopa treatment before the study began failed to respond to large doses of lisuride. Psychiatric side effects (including nightmares, isolated visual hallucinations and toxic confusional states) were the dose-limiting factor in six patients. A modest reduction in orthostatic hypotension occurred in two patients, one of whom had experienced an aggravation of this disturbance on levodopa and bromocriptine. Destruction of post-synaptic dopamine receptors and damage to central noradrenergic systems may offer an explanation for the lack of therapeutic effects of lisuride.

The Shy-Drager syndrome, also known as multiple system atrophy with autonomic failure, is a degenerative disorder of the nervous system which affects the central pathways involved in normal voluntary movement and the autonomic nervous system. There are no distinctive biochemical disturbances but a severe depletion of the brain catecholamines, dopamine and noradrenaline, occurs and central cholinergic systems are also affected. In contrast to Parkinson's disease, however, where similar abnormalities occur, dopamine replacement therapy has proved disappointing. Temporary improvement has been reported in a few patients with both levodopa and the dopaminergic agonist, bromocriptine, but unresponsiveness even to large doses is more common. A more complete destruction of dopaminergic neurones in the substantia nigra might offer one explanation for this disparity as both levodopa and bromocriptine require an intact presynaptic neuronal apparatus to produce their pharmacological effects.

Lisuride hydrogen maleate is a semi-synthetic ergolene derived from d-isolysergic acid. It is a powerful antagonist of 5-hydroxytryptamine and in common with some other ergot alkaloids, it possesses dopamine receptor stimulating properties. For example, it provokes stereotypy in rodents, reverses reserpine-induced catalepsy and hypothermia and causes contralateral rotation in rats with unilateral destruction of the nigro-striatal dopaminergic pathway. Lisuride increases brain dopamine concentration, reduces brain dopamine turnover and is a potent suppressor of prolactin release in animals and man. One important difference between lisuride and the structurally related bromocriptine is that the former's behavioural and biochemical effects are not abolished by inhibition of tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of dopamine. This suggests that lisuride acts as a direct postsynaptic dopaminergic agonist and it could, therefore, have beneficial effects even in the total absence of dopaminergic neurones. This justified a trial of lisuride in patients with multisystem degeneration and autonomic failure.

Patients and methods

Seven patients with multi-system degeneration and autonomic failure agreed to participate in a controlled

Address for reprint requests: Dr AJ Lees, The National Hospital for Nervous Diseases, Maida Vale, London W9.

Accepted 22 November 1980
Table The therapeutic effects of levodopa on histologically proven cases of striato-nigral degeneration (± autonomic failure) (all patients had severe rigidity and bradykinesia)

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age at onset (yr)</th>
<th>Clinical features</th>
<th>Levodopa treatment</th>
<th>Adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duration at onset (yr)</td>
<td>Max dosage (mg/day)</td>
</tr>
<tr>
<td>Izumi et al 1971</td>
<td>M 51</td>
<td>2</td>
<td>1</td>
<td>6400</td>
</tr>
<tr>
<td>F 53</td>
<td>3</td>
<td>+</td>
<td>2</td>
<td>2600</td>
</tr>
<tr>
<td>F 73</td>
<td>4</td>
<td>+</td>
<td>3</td>
<td>1200</td>
</tr>
<tr>
<td>Bannister and Oppenheimer 1972</td>
<td>F 48</td>
<td>6</td>
<td>3</td>
<td>3000</td>
</tr>
<tr>
<td>Rajput et al 1972</td>
<td>F 56</td>
<td>7</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td>F 63</td>
<td>7</td>
<td>+</td>
<td>7</td>
<td>5000</td>
</tr>
<tr>
<td>Trotter 1973</td>
<td>F 66</td>
<td>8</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>Sharpe et al 1973</td>
<td>F 41</td>
<td>6</td>
<td>+</td>
<td>5</td>
</tr>
<tr>
<td>Takei and Mirra 1973</td>
<td>F 66</td>
<td>2</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Schober et al 1975</td>
<td>F 53</td>
<td>3</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Michel et al 1976</td>
<td>M 61</td>
<td>3</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td>F 61</td>
<td>2</td>
<td>+</td>
<td>1</td>
<td>600*</td>
</tr>
<tr>
<td>Boudin et al 1976</td>
<td>F 59</td>
<td>7</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>F 56</td>
<td>4</td>
<td>+</td>
<td>2</td>
<td>800*</td>
</tr>
<tr>
<td>Delean and Deck 1976</td>
<td>M 54</td>
<td>6</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>Raiput and Rozdilsky 1976</td>
<td>M 46</td>
<td>5</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>Feve et al 1977</td>
<td>F 61</td>
<td>4</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td>Spokes et al 1980</td>
<td>M 70</td>
<td>9</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>M 49</td>
<td>9</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 51</td>
<td>4</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 23</td>
<td>5</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 57</td>
<td>3</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 49</td>
<td>6</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 59</td>
<td>7</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 59</td>
<td>5</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 57</td>
<td>2</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 41</td>
<td>6</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 69</td>
<td>8</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In combination with a peripheral dopa decarboxylase inhibitor.
The use of lisuride in the treatment of multiple system atrophy

A trial of lisuride hydrogen maleate to be carried out in hospital. All of them had Parkinsonian features and postural hypotension with abnormalities of their cardiovascular reflexes. Severe bradykinesia and rigidity were present in patients Nos 1, 2, 3, 5, 6, and 7 and three of the patients also had a coarse (4-7 Hz) tremor at rest (patients Nos 1, 2, 7). The results of levodopa therapy in combination with a peripheral dopa decarboxylase inhibitor in the patients are shown in the table. After informed consent all levodopa preparations were withdrawn; only one of the three patients still receiving them deteriorated appreciably (patient No 6). Patients Nos 1, 5 and 7 had also taken bromocriptine without benefit and profound aggravation of orthostatic hypotension had occurred in two (patients Nos 5 and 7).

For ethical reasons patient No 6 was given lisuride in an open fashion as he became severely incapacitated on withdrawal of levodopa. The remainder of the patients took part in a randomised double-blind cross-over trial using a placebo indistinguishable from lisuride. Treatment was begun with an initial dose of 0.2 mg a day after supper and after three days this was increased to 0.2 mg every 8 hours following meals. After this daily increments of 0.6 mg in divided dosage were made every three days up to optimum tolerated levels or an arbitrary maximum daily dosage of 5 mg. The patients were maintained on maximum doses for a minimum of 7 days and each phase of the trial lasted for 6 weeks. If toxic side-effects occurred the daily dose was reduced by 0.6 mg and the patients were kept at that level of drug intake until the end of the trial.

Patients were evaluated twice a week by the same assessor using a modified Columbia University scale (4-point disability rating system). Fifteen parameters were used to give a maximum total disability score of 60. Erect and supine blood pressure recordings were made at six-hourly intervals. For statistical analysis the last three disability scores on active and placebo medication, were used together with mean lying and standing blood pressures taken over the last three days of each phase of the trial.

Results

The mean dose of lisuride was 2.4 mg (0.6-5.0 mg) daily but only patient No 4 who had relatively mild Parkinsonian features tolerated 5.0 mg/day. No statistically significant improvement in disability occurred and only patient No 7 showed any benefit. The overall scores for each individual are shown in the figure. A separate analysis of individual parameters failed to reveal any selective benefits. No statistically significant effects on orthostatic hypotension occurred, although a modest elevation in erect blood pressure in patients Nos 4 and 7 was seen.

Psychiatric side-effects were the limiting factor in six patients and the dosage was reduced promptly when they occurred; the effects subsided rapidly and did not recur. Visual hallucinations occurred in five patients and in two they were accompanied by a toxic confusional state. Patient No 1 complained of soldiers charging down the ward on horseback in the early evening. Patient No 2 reported neighbours and relatives peering out of her bath water. Patient No 3 became unable to recognise his fellow patients in the hospital ward and saw armed guards arresting other patients and opening surgical equipment. On other occasions this patient became convinced that he was to be charged with the murder of a young girl. Patient No 5 noticed giant rats and hideous beasts at her bedside and patient No 6 had a panoramic nightmare in vivid colours involving macabre occult rituals. Patient No 7 described the most alarming visions of all: diseased putrefying faces, grotesque monsters impinged on personal possessions like her handbag, threatening bandits, and her bed being transformed into a huge sweet jar. Finally she became convinced that a member of the Royal Family was having a miscarriage in the bed next to her. None of these patients had experienced any psychiatric complications on levodopa or bromocriptine. Other adverse reactions were insignificant and included mild nausea (two patients) and severe dizziness without an increase in orthostatic hypotension (patient No 5).

Discussion

At least two distinct neurological diseases cause loss of preganglionic sympathetic fibres in the central nervous system. The first is a multi-system degeneration affecting corticospinal and cerebellar pathways as well as the basal ganglia. Striato-nigral degeneration and olivo-ponto-cerebellar atrophy have so far not been distinguishable pathologically from this condition and it is only the additional involvement of the sympathetic fibres in the intermediolateral column of the spinal cord which justify
the eponymous title the Shy-Drager syndrome. In
the second group of patients autonomic failure
occurs either alone or in association with brady-
kinesia, rigidity and tremor indistinguishable clini-
cally from idiopathic Parkinson's disease. Here
the histological findings include the presence of Lewy-
type inclusion bodies in the degenerating pigmented
brain stem nuclei and the sympathetic ganglia.8 9
It is possible that patient No 7 was suffering from
Parkinsonism with autonomic failure rather than the
Shy-Drager syndrome and it is of interest that she
was one of the two patients who derived marked
initial benefit from levodopa.

The effects of levodopa therapy on the 21 patients
in the medical literature with bradykinetic-rigid
syndromes found at necropsy to be due to striato-
nigral degeneration are shown in the table.9 10-22
Only one patient22 had derived sustained worthwhile
improvement and at the price of dyskinesias, but
initial benefit lasting up to 6 months occurred in
a further six. Eight of these 21 patients also had
autonomic failure (Shy-Drager syndrome)2 12 17 20 21
and in only two of these24 25 did transient benefit
in extrapyramidal features occur. Clinical studies also
confirm the poor response of the Shy-Drager
syndrome to levodopa,23 although two patients with
olivo-ponto-cerebellar degeneration improved.24
Results with bromocriptine have been similar25-27
with temporary benefit occurring in occasional
patients. There is only one histologically confirmed
case of Parkinsonism with autonomic failure in the
literature who received levodopa.21 In this patient a
dose of 3-0 g levodopa per day produced a marked
increase in postural hypotension, as occurred in our
patient No 7.

The therapeutic effects of lisuride in this study
were extremely disappointing; modest benefit occur-
rng only in patient No 7. Patient No 6 who was the
only one benefiting from levodopa, derived no
benefit from lisuride at high dosage. Damage to
post-synaptic dopamine receptors is known to occur
in the Shy-Drager syndrome and this may be the
explanation for the lack of improvement.28

Lisuride had no significant effects on postural
hypotension although in two patients (patients Nos
4 and 7) a modest elevation occurred. It was of
interest that patient No 7 had experienced syncopal
attacks with levodopa and bromocriptine. A rise in
standing blood pressure has also occasionally been
reported with levodopa23 29 and bromocriptine30
although a severe increase in orthostatic hypotension
can also occur. After conversion of levodopa to
dopamine, central hypotensive30 and peripheral
pressor effects occur and disconnection between
these two pathways in some patients with the Shy-Drager
syndrome might lead to paradoxical effects. Further-
more, effects of dopaminergic drugs on blood
pressure may be different when there is severe de-
struction of central autonomic pathways.

Visual hallucinations occur relatively commonly in
patients with Parkinson's disease receiving levodopa
and bromocriptine but have only occasionally been
reported in patients with multiple system atrophy.
Vivid dreams and nightmares often occur before the
hallucinations which are frequently evaluated by the
patients as being fictitious. Excessive stimulation of
mesolimbic and mesocortical dopamine pathways
have been suggested as a likely cause but the patho-
logical substrate of Parkinson's disease must be a
relevant factor as these dopaminergic drugs have not
so far produced psychiatric effects in normal people
or acromegals. Structural irritative lesions in the
parieto-occipital cortex31 can produce similar perceptual
disturbances and the poorly documented peduncular
hallucinations described initially by L'Hermitte32 also bear some resemblance to these
drug-induced effects. Although lisuride and bromo-
criptine show some structural similarity to the
psychedelic drug lysergic acid diethylamide (LSD-25),
basic molecular differences make it unlikely that
endothogenous conversion to this agent occurs.

The high incidence of visual hallucinations with
lisuride was surprising. None of the patients had
clinical or radiological evidence of cortical atrophy
and none had experienced similar phenomena with
levodopa or bromocriptine. Psychiatric complications
have not constituted a major problem with lisuride
in Parkinson's disease as yet although there are only
a few published reports.33

We are grateful to Dr P Bye and Dr R Horowski
of Schering Chemicals for product information and
supplies of lisuride and placebo. Miss E Edwards
typed the manuscript.

References

1 Shy GM, Drager GA. A neurological syndrome
associated with orthostatic hypotension. Arch
2 Spokes EGS, Bannister R, Oppenheimer DR.
Multiple system atrophy with autonomic failure.
Clinical histological and neurochemical observations
3 Horowski R, Wachtel H. Direct dopaminergic action
of lisuride hydrogen maleate, an ergot derivative in
4 Pieri M, Schaffner R, Haeffely, W. Central dopamine-
receptor stimulation by LSD and lisuride. Exper-
5 Kehr W. Effects of lisuride and other ergot derivatives
on monoaminergic mechanisms in rat brain. Eur J
Pharmacol 1977; 41:261-73.
The use of lisuride in the treatment of multiple system atrophy

The use of lisuride in the treatment of multiple system atrophy with autonomic failure (Shy-Drager syndrome).

A J Lees and R Bannister

J Neurol Neurosurg Psychiatry 1981 44: 347-351
doi: 10.1136/jnnp.44.4.347

Updated information and services can be found at:
http://jnnp.bmj.com/content/44/4/347

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/