Genetic and immunologic analysis on moyamoya

TOSHIKI KITAHARA, KO OKUMURA, AKIO SEMBA, AKIRA YAMAURA, HIROYASU MAKINO

From the Department of Neurological Surgery, Chiba University School of Medicine, Chiba, and the Department of Immunology,Faculty of Medicine, University of Tokyo, Tokyo, Japan

SUMMARY The genetic and immunologic abnormalities associated with the pathogenesis of moyamoya were assessed in 23, 13 children and 10 adults with angiographically diagnosed moyamoya. In HLA-A, -B, -C stereotyping, an association was found of AW24, BW46, and BW54 with relative risks of 3·83, 6·50, and 3·58 respectively. Natural T cell toxic autoantibody was detected by FACS analysis in sera from five out of 23 patients. Millipore filter assay for autoantibody against double-stranded DNA revealed higher than normal binding in sera from four out of 18 patients. Anti-vessel antibody which might be responsible for vascular change associated with moyamoya was not detected in any of the 23 patients studied. Significant association of the disease with certain HLA types, in addition to the presence of natural T cell toxic autoantibody and anti-double-stranded DNA antibody in patients' sera, supports the theory that genetic and immunologic disturbances may underlie the pathogenesis of moyamoya.

Since moyamoya was reported initially by Kudo et al in 1956,1 numerous studies have been carried out concerning the symptoms, neuroradiology, epidemiology, statistics, etc of the disorder. However, many questions remained unanswered. Among these are the important questions of whether moyamoya is a single clinical entity and what is the underlying pathogenesis. At the present time, the cause of this disease process is unknown.

Previously we reported on the occurrence in siblings, including six patients in three families among 49 cases of moyamoya. This strongly suggests a hereditary factor.2 The present study attempted to elucidate further the pathogenic mechanism of moyamoya. Patients clinically and angiographically diagnosed as moyamoya were assessed genetically and immunologically by tests for human leukocyte antigen (HLA), natural T cell toxic autoantibody (NTA), anti-double-stranded DNA antibody (anti-ds DNA antibody), and anti-vessel antibody.

Material and methods

Patients The 23 patients (five male and 18 female) included in this study were confirmed by angiography to have moyamoya. Clinical information on each patient concerning age of onset, clinical presentation (transient ischaemic attack, infarction, epilepsy, intracranial haemorrhage, or headache), follow-up results (good, fair, or poor) and surgical treatment are shown in table 1. HLA typing HLA-A, -B, and -C stereotyping of peripheral blood lymphocytes from moyamoya patients was kindly performed by Dr T Jui, Blood Transfusion Service, Tokyo University Hospital, Tokyo, Japan.

Natural T Cell Toxic Autoantibody Peripheral blood lymphocytes were obtained from whole heparinised blood of a normal volunteer by centrifugation over a Ficoll-Hypaque gradient. In order to remove B cells, the lymphocytes were incubated on Petri dishes that were precoated with rabbit anti-human immunoglobulins. Non-adherent cells were used as target T cells for the detection of NTA. The cells were incubated with serum from each patient at 4°C for 30 min and then washed. They were stained with fluorescein isocyanate-labelled goat anti-human immunoglobulin and analysed by the fluorescence activated cell sorter (FACS, Becton Dickinson Electronics Laboratory, Mountain View, Calif.). Analysis of fluorescence profiles of stained cells was performed according to the method described by Herzenberg et al.3 As a control, T cells stained with normal serum and the same fluoresceinated reagent were analysed under identical conditions. The analytical patterns were recorded by direct photography of the oscilloscope.

Anti-double-stranded DNA Antibody (Anti-ds DNA Antibody) Analysis of anti-ds DNA antibody was generously carried out by Dr R Yokohari and Dr S Aotsuka, Division of Immunology, Clinical Research Institute, National Center Hospital, Tokyo, Japan, with a modification of the millipore filter method of Ginsberg and Keisel.4

Anti-vessel antibody In order to test for anti-vessel anti-

Address for reprint requests: Toshiki Kitahara, M.D., Department of Neurological Surgery, Chiba University School of Medicine, 1-8-1 Inohana-cho, Chiba-shi, Chiba, Japan.

Received 10 May 1982. Accepted 6 June 1982
Genetic and immunologic analysis on moyamoya

Table 1 Data of 23 moyamoya patients

<table>
<thead>
<tr>
<th>Case No</th>
<th>Sex</th>
<th>Age at onset (yr)</th>
<th>Age of symptom state of onset (yr)</th>
<th>Stage</th>
<th>Follow-up results</th>
<th>Surgical treatment</th>
<th>NTA</th>
<th>*Anti-ds-DNA Antibody</th>
<th>Anti-Vessel Antibody</th>
<th>HLA Typing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>f</td>
<td>6</td>
<td>1</td>
<td>Infarction</td>
<td>Active</td>
<td>Poor</td>
<td>(-)</td>
<td>(+)</td>
<td>9-9</td>
<td>(-)</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>5</td>
<td>3</td>
<td>TIA</td>
<td>Active</td>
<td>Fair</td>
<td>EMS</td>
<td>(-)</td>
<td>3-7</td>
<td>(-)</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>5</td>
<td>5</td>
<td>TIA</td>
<td>Active</td>
<td>Good</td>
<td>(-)</td>
<td>(-)</td>
<td>1-7</td>
<td>(-)</td>
</tr>
<tr>
<td>4</td>
<td>f</td>
<td>15</td>
<td>9</td>
<td>STA-MCA</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(-)</td>
<td>0-2</td>
<td>(-)</td>
</tr>
<tr>
<td>5</td>
<td>f</td>
<td>17</td>
<td>10</td>
<td>STA-MCA</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(++)</td>
<td>2-8</td>
<td>(-)</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>19</td>
<td>9</td>
<td>STA-MCA</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(-)</td>
<td>2-6</td>
<td>(-)</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>10</td>
<td>2</td>
<td>TIA</td>
<td>Active</td>
<td>Fair</td>
<td>EMS</td>
<td>(-)</td>
<td>2-6</td>
<td>(-)</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>13</td>
<td>4</td>
<td>STA-MCA</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(-)</td>
<td>1-3</td>
<td>(-)</td>
</tr>
<tr>
<td>9</td>
<td>f</td>
<td>13</td>
<td>7</td>
<td>STA-MCA</td>
<td>Stationary</td>
<td>Poor</td>
<td>(-)</td>
<td>(-)</td>
<td>1-3</td>
<td>(-)</td>
</tr>
<tr>
<td>10</td>
<td>f</td>
<td>9</td>
<td>4</td>
<td>TIA</td>
<td>Stationary</td>
<td>Fair</td>
<td>EMS</td>
<td>(-)</td>
<td>0-6</td>
<td>(-)</td>
</tr>
<tr>
<td>11</td>
<td>f</td>
<td>11</td>
<td>7</td>
<td>Epilepsy</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(+++)</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>12</td>
<td>f</td>
<td>16</td>
<td>9</td>
<td>TIA</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(-)</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>13</td>
<td>f</td>
<td>21</td>
<td>6</td>
<td>Infarction</td>
<td>Stationary</td>
<td>Fair</td>
<td>(-)</td>
<td>(-)</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>14</td>
<td>f</td>
<td>4</td>
<td>1</td>
<td>Infarction</td>
<td>Stationary</td>
<td>Fair</td>
<td>(-)</td>
<td>(-)</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>15</td>
<td>f</td>
<td>18</td>
<td>10</td>
<td>ICH</td>
<td>Stationary</td>
<td>Good</td>
<td>V-P shunt</td>
<td>(-)</td>
<td>1-2</td>
<td>(-)</td>
</tr>
<tr>
<td>16</td>
<td>f</td>
<td>33</td>
<td>19</td>
<td>STA-MCA</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(-)</td>
<td>1-2</td>
<td>(-)</td>
</tr>
<tr>
<td>17</td>
<td>f</td>
<td>25</td>
<td>18</td>
<td>Headache</td>
<td>Stationary</td>
<td>Poor</td>
<td>DC</td>
<td>(-)</td>
<td>15</td>
<td>(-)</td>
</tr>
<tr>
<td>18</td>
<td>f</td>
<td>54</td>
<td>52</td>
<td>ICH</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(-)</td>
<td>0-0</td>
<td>(+)</td>
</tr>
<tr>
<td>19</td>
<td>m</td>
<td>44</td>
<td>31</td>
<td>Epilepsy</td>
<td>Stationary</td>
<td>Fair</td>
<td>(-)</td>
<td>(-)</td>
<td>9-7</td>
<td>(-)</td>
</tr>
<tr>
<td>20</td>
<td>m</td>
<td>43</td>
<td>37</td>
<td>ICH</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(-)</td>
<td>2-1</td>
<td>(-)</td>
</tr>
<tr>
<td>21</td>
<td>m</td>
<td>57</td>
<td>46</td>
<td>ICH</td>
<td>Stationary</td>
<td>Good</td>
<td>EMS</td>
<td>(-)</td>
<td>13-6</td>
<td>(-)</td>
</tr>
<tr>
<td>22</td>
<td>m</td>
<td>55</td>
<td>51</td>
<td>ICH</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(+)</td>
<td>-</td>
<td>(-)</td>
</tr>
<tr>
<td>23</td>
<td>m</td>
<td>47</td>
<td>16</td>
<td>Epilepsy</td>
<td>Stationary</td>
<td>Good</td>
<td>(-)</td>
<td>(+)</td>
<td>0-2</td>
<td>(-)</td>
</tr>
</tbody>
</table>

TIA: transient ischaemic attack
ICH: intracranial haemorrhage
EMS: encephalo-myo-synangiosis
DC: decompressive craniectomy
STA-MCA: STA-MCA anastomosis
NTA: natural T cell toxic auto-antibody
*: normal range: less than 5-37
Good: able to work
Fair: capable of self-care
Poor: incapable of self-care

Table 2 Phenotype frequency of HLA-A, B and C in moyamoya

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Our cases n = 18</th>
<th>Reviewed cases* n = 31</th>
<th>Total n = 49</th>
<th>Control n = 106</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No (%)</td>
<td>No (%)</td>
<td>No (%)</td>
<td>No (%)</td>
</tr>
<tr>
<td>HLA-A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>7 (38-9)</td>
<td>10 (32-2)</td>
<td>17 (34-7)</td>
<td>51 (48-1)</td>
</tr>
<tr>
<td>A11</td>
<td>2 (11-1)</td>
<td>2 (6-5)</td>
<td>4 (8-2)</td>
<td>15 (14-2)</td>
</tr>
<tr>
<td>AW24</td>
<td>15 (83-3)</td>
<td>23 (74-2)</td>
<td>38 (77-6)</td>
<td>60 (56-6)</td>
</tr>
<tr>
<td>A26</td>
<td>3 (16-7)</td>
<td>8 (25-8)</td>
<td>11 (22-4)</td>
<td>22 (20-8)</td>
</tr>
<tr>
<td>AW31</td>
<td>0</td>
<td>7 (22-6)</td>
<td>7 (14-3)</td>
<td>18 (17-0)</td>
</tr>
<tr>
<td>AW32</td>
<td>1 (5-5)</td>
<td>1 (3-2)</td>
<td>2 (4-1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>AW33</td>
<td>2 (11-1)</td>
<td>5 (16-1)</td>
<td>7 (14-3)</td>
<td>14 (13-2)</td>
</tr>
<tr>
<td>HLA-B5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B7</td>
<td>4 (22-2)</td>
<td>2 (6-5)</td>
<td>6 (12-2)</td>
<td>12 (11-3)</td>
</tr>
<tr>
<td>B16</td>
<td>0</td>
<td>6 (19-4)</td>
<td>6 (12-2)</td>
<td>19 (17-9)</td>
</tr>
<tr>
<td>BW16</td>
<td>0</td>
<td>4 (12-9)</td>
<td>4 (8-2)</td>
<td>10 (9-4)</td>
</tr>
<tr>
<td>BW35</td>
<td>1 (5-5)</td>
<td>2 (6-5)</td>
<td>3 (6-1)</td>
<td>14 (13-2)</td>
</tr>
<tr>
<td>BW44</td>
<td>2 (11-1)</td>
<td>6 (19-4)</td>
<td>8 (16-3)</td>
<td>12 (11-3)</td>
</tr>
<tr>
<td>BW46</td>
<td>0</td>
<td>0 (11-1)</td>
<td>2 (4-1)</td>
<td>2 (1-9)</td>
</tr>
<tr>
<td>BW51</td>
<td>4 (22-2)</td>
<td>0 (11-1)</td>
<td>4 (8-2)</td>
<td>19 (17-9)</td>
</tr>
<tr>
<td>BW52</td>
<td>6 (33-3)</td>
<td>6 (12-2)</td>
<td>6 (12-2)</td>
<td>21 (19-8)</td>
</tr>
<tr>
<td>BW54</td>
<td>11 (35-5)</td>
<td>[17 (34-7)]</td>
<td>13 (12-3)</td>
<td></td>
</tr>
<tr>
<td>BW60</td>
<td>4 (22-2)</td>
<td>[2 (49-0)]</td>
<td>[36 (34-0)]</td>
<td></td>
</tr>
<tr>
<td>BW61</td>
<td>[3 (16-7)]</td>
<td>[17 (54-8)]</td>
<td>[24 (34-0)]</td>
<td></td>
</tr>
<tr>
<td>HLA-CW1</td>
<td>7 (38-9)</td>
<td>35 (33-0)</td>
<td>47 (44-3)</td>
<td>13 (12-3)</td>
</tr>
<tr>
<td>CW3</td>
<td>9 (50-0)</td>
<td>47 (44-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CW7</td>
<td>1 (5-5)</td>
<td>13 (12-3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*reviewed cases in reference 7 and 10
†relative risk 3-83, P < 0-05
‡relative risk 6-50, P < 0-05
§relative risk 3-58 P < 0-025
¶relative risk 3-80, P < 0-005
body, indirect immunofluorescence was applied. A cortical artery of the brain, obtained from a temporal lobectomy, was used. A three micron thick section of the artery was put on a glass slide and fixed by acetone. The patient serum was incubated with the tissue section and the slide washed. The section then was overlaid with fluorescein conjugated goat anti-human immunoglobins. After washing, the slides were examined under a fluorescent microscope.

Results

HLA Typing

HLA-A, -B, -C typing was performed in 18 patients. These results, in addition to those of 106 normal controls and those previously reported from 31 moyamoya patients, are presented in tables 1 and 2. The relative risk (RR) of each HLA type in moyamoya patients was calculated by the following formula.

\[
RR = \frac{\text{number of patients with corresponding type} \times \text{number of controls without corresponding type}}{\text{number of patients without corresponding type} \times \text{number of controls with corresponding type}}
\]

Each relative risk of AW24, BW46, and BW54 was high, and statistically significant, that is, 3-83, 6-50, and 3-58 respectively.

Natural T Cell Toxic Autoantibody

Sera from 23 patients were tested and five patients were revealed possessing NTA (table 1). None of these five patients had any previous medical history such as undergoing blood transfusion or pregnancy which might be associated with a “false positive” in the examination. In tests of sera from 101 normal donors, this was not demonstrated. The FACS profiles of patient 11 who possessed the highest titre is depicted in fig 1 in contrast with a normal control.

![FACS profile of human lymphocytes stained with serum from patient 11 and a normal subject.](image)

Ant双链DNA抗体

Analysis was performed with sera from 19 patients. As a control, sera from 15 normal volunteers were examined for anti-ds DNA antibody. The average of ds DNA bound by sera from normal subjects was 2-50 ± 1-43% (mean value and standard deviation). Therefore, the normal range was below 5-37%. The average value of moyamoya patients was 3-66 ± 4-14%, and this is significantly different from the normal. However, in four patients, the percentage of ds DNA bound was much higher than the normal range (fig 2). In the same analysis, anti-ds DNA antibody was specifically or preferentially demonstrated in sera from patients with lupus erythematosus among various autoimmune diseases, as shown in fig 2.

Antivessel Antibody

By immunofluorescence, antibody blood vessels was not detected in sera from any of 23 patients (table 1).

Relation Between Clinical and Genetic or Immunologic Findings

In patients with NTA or anti-ds DNA antibody or both, no correlation with the clinical findings was determined. Of the patients with such antibodies most were adults. Case 1, in which the clinical stage was “active” and the follow-up results were “poor”, was remarkable in that both natural T cells antibody anti-ds DNA antibody were detected. Furthermore, this patient was typed as HLA-AW24 and -BW54 which overall showed a significant association with moyamoya.

Discussion

The major histocompatibility complex of man controls the human histocompatibility antigen expressed on leukocytes, that is, HLA and is inherited in a Mendelian fashion. Certain HLA types are reported to occur with high frequency in association with certain diseases. In our study of 18 patients, moyamoya was associated with HLA-AW24 (RR;3-83), BW46 (RR:6-50), and -BW54 (RR;3-58) (table 2). Particularly, the association with BW54 was also noted in 31 cases which have been already reported. Moreover, when the pathogenesis of moyamoya is considered, it is notable that rheumatoid arthritis in Japanese patients, especially associated with vasculitis, showed a high relative risk associated with BW54. This significant association between moyamoya and certain HLA types is consistent with the hypothesis that this disease may have, in part, a hereditary basis. In order to confirm this, a more detailed
Genetic and immunologic analysis on moya-moya

NTA was initially discovered in the New Zealand Black (NZB) mouse. These mice spontaneously develop a systemic autoimmune disease similar to that of human systemic lupus erythematosus. NTA also has been demonstrated in various human autoimmune diseases, such as systemic lupus erythematosis, rheumatoid arthritis, progressive systemic sclerosis, myasthenia gravis, infectious mononucleosis. Previously, Okumura et al had obtained the same results in several examinations of autoimmune diseases. The autoantibody was detected in about 45% of the patients with systemic lupus erythematosus, 31% with progressive systemic sclerosis, 23% with rheumatoid arthritis, and 86% with ulcerative colitis (table 3). Moreover, in the NZB mouse, NTA is associated with the selective loss of the suppressor T cell function, followed by the development of autoimmune disease. Therefore, the frequency of NTA in moya-moya, compared to that in autoimmune diseases, suggests that an autoimmune mechanism may participate in the pathogenesis of this disease.

Antibodies against ds DNA are regarded as a characteristic of systemic lupus erythematosus and generally associated with the disease. Moreover, accumulating evidence suggests that these antibodies play an important role in the pathogenesis of lupus nephritis. The present study is the first in which anti-ds DNA antibody in moya-moya was

Table 3 Incidence of natural T cell toxic autoantibody in various diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Incidence</th>
<th>% incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0/101</td>
<td>0</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>46/102</td>
<td>45</td>
</tr>
<tr>
<td>Progressive systemic sclerosis</td>
<td>16/51</td>
<td>31</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>15/66</td>
<td>23</td>
</tr>
<tr>
<td>Behçet’s disease</td>
<td>0/46</td>
<td>0</td>
</tr>
<tr>
<td>Aortitis syndrome</td>
<td>2/17</td>
<td>12</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>19/22</td>
<td>86</td>
</tr>
<tr>
<td>Moya-Moya</td>
<td>5/23</td>
<td>22</td>
</tr>
</tbody>
</table>
examined. The importance of this autoantibody in pathogenesis of moya-moya is not known at present. However, the fact cannot be ignored that this antibody was clearly demonstrated in four moya-moya patients.

The occlusive change in the terminal portion of the internal carotid artery, characteristic of moya-moya, might result from an immune reaction to the artery. The histopathology of this lesion resembles that of polyarteritis nodosa. In our study, we failed to detect the existence of anti-vessel autoantibody in the sera of moya-moya, patients by the immunofluorescence method. The histopathological change in the internal carotid artery must be considered to be the most important matter in understanding moya-moya and warrants further investigation.

We are grateful to Professor T Tada, Department of Immunology, Faculty of Medicine, University of Tokyo, for support and advice in this study.

References

Genetic and immunologic analysis on moyo-moya.

T Kitahara, K Okumura, A Semba, A Yamaura and H Makino

J Neurol Neurosurg Psychiatry 1982 45: 1048-1052
doi: 10.1136/jnnp.45.11.1048

Updated information and services can be found at:
http://jnnp.bmj.com/content/45/11/1048

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/