Journal of Neurology, Neurosurgery, and Psychiatry 1982;45:166-169

Short report

Long-lasting cerebral functional changes following moderate dose x-radiation treatment to the scalp in childhood: an electroencephalographic power spectral study*

ISRAEL YAAR, ELAINE RON, BARUCH MODAN, YOSEFF RINOTT, MINA YAAR, MICHAELLA MODAN

From the Hadassah University Hospital, Jerusalem, Israel and the Medical Neurology Branch, National Institutes of Health, Bethesda, MD, USA

SUMMARY EEG tracings were compared in 44 young adults who received scalp x-radiation treatment for tinea capitis during childhood and 59 non-irradiated control subjects. The irradiated subjects were exposed, over 20 years previously, to a mean dose of 130 rads to the brain. Visual analysis of the EEG revealed an insignificant excess of abnormalities among the irradiated subjects compared to the controls. Power spectral density function analysis showed increased power values among the irradiated subjects, particularly in the beta wave frequencies. This finding provides further evidence for suspecting that x-irradiation during brain maturation may cause long-lasting damage to the brain tissue.

The immature CNS has been shown to be very sensitive to x-radiation.1–10 Electroencephalograms (EEG) of children have responded immediately to x-radiation doses as low as 130 rads,6 but long-term EEG follow ups have not yet been done in normal humans and quantitative EEG techniques have been used rarely.3

From 1910 to 1960 approximately 200,000 children worldwide, and about 20,000 children in Israel, received scalp x-ray epilation as treatment for tinea capitis.11 Dosimetric studies demonstrated that the average radiation dose to the brain was 13018 or 14013 rads. An excess risk of head and neck neoplasia,14–19 and an elevated risk of mental disorders and admission to psychiatric hospitals have been reported among tinea irradiated populations.20 21 In addition, several measures of scholastic aptitude and achievement indicated a tendency for the irradiated subjects to be less successful than the comparison groups.21 In this study, quantitative EEG examinations were undertaken to determine whether there are measurable signs of organic cerebral damage.

Address for reprint requests: Dr Israel Yaar, NIH, NINCDS, Building 10, Room 10D18, Bethesda, MD 20205, USA.

Received 26 May 1981 and in revised form 6 September 1981 Accepted 26 September 1981

*Supported by a research agreement no. 06-0-09-3 from the Bureau of Radiological Health, U.S. Public Health Service.

Dr Yaar, Hadassah Hospital, Jerusalem and Medical Neurology Branch, National Institutes of Health, Bethesda, Maryland; Dr Ron, Department of Clinical Epidemiology, Chaim Sheba Medical Center, Tel Hashomer; Dr Modan, Department of Clinical Epidemiology, Chaim Sheba Medical Center; Dr Rinott, Department of Statistics, Hebrew University, Jerusalem; Dr M Yaar, Department of Dermatology, Hadassah Hospital, Jerusalem; Dr M Modan, Department of Clinical Epidemiology, Chaim Sheba Medical Center, Tel Hashomer.
population controls and 5400 tinea-free, non-irradiated sibling controls. The control subjects were individually matched to the irradiated subjects on age, country of origin and year of immigration to Israel. The EEG examinations constituted a stratified random sample of members of the original study cohort.

EEG recordings were obtained on 103 subjects, all between the ages of 20 and 35 years: 44 irradiated subjects (IS), 23 males and 21 females, and 59 control subjects (CS), 30 males and 29 females. The mean ages of the four groups IS/CS/males/females were 28.6; 29.1; 28.7 and 29.4 years respectively. There was no difference in age distribution among the four subgroups. EEGs were obtained by regular paper tracings for clinical visual interpretation and F8-T4; F7-T3; T6-02; T5-01 derivations were tape recorded for Power Spectral Density Function (PSDF) analysis. These EEG tracings were band pass filtered from 2-40 Hz, 3 db points, with attenuation of 24 db/octave and analog to digital converted at 128 samples per second. Digitised data (256 data points at a time) were windowed and Ultra-Fast-Fourier-Transformed. The resulting coefficients were squared, summed and averaged repeatedly 60 times, over a total period of two minutes. This produced four PSDFs for each subject, one for each of the four EEG tracings, calculated for 0-30 Hz at multiples of 0.5 Hz. The four PSDFs were then averaged together into one representative PSDF with 61 nominal frequency bands (APSDF).

Visual analysis of the paper-recorded EEG tracings was “blindly” performed by one of the investigators (1Y). Eight channels were analysed at rest as well as during hyperventilation and photic stimulation. The clinical records were scored as normal or abnormal.

The 60 APSDF (0 Hz was not included) values were compared between the IS and CS in a multivariate analysis of variance (SPSS MANOVA), taking into account radiation exposure, sex and their interaction and by repeated t tests. Two-group discriminant analyses, performed separately for males and females, were also undertaken. A search for subjects with extreme spectral values was performed by four-group discriminant analysis, but none were found.

Results

Visual analysis of the EEG records for background activities revealed an insignificant increase in the frequency of abnormalities among the irradiated subjects (31%) compared to the control group (25%). The overall relative risk (RR) for abnormalities was 1.3 (table 1) and was consistent for males and females (RR = 1.4 and 1.2 respectively).

Increased power values among the IS as compared to the CS were observed in 50 out of the 60 (83%) APSDF variables (table 2); differences were found in 23 of the nominal frequency bands, all of them in the beta frequencies. Further analyses, taking sex into account, demonstrated an identical pattern (repeated ANOVA). Higher power values were found for both male and female IS compared to CS and this difference was again most evident in the beta frequency bands.

Looking at all of APSDF variables together (MANOVA), indicated that there was an overall radiation effect (F = 1.90; p = 0.017). Females had higher values than males (F = 2.034; p = 0.01), but sex and radiation interaction was not significant (F = 1.36; p = 0.15).

Finally, two-group discriminant analyses showed the effect of irradiation to be highly significant for both sexes (males: F = 11.5; p = 0.0000; females: F = 8.8; p = 0.0001).

Discussion

Our results indicate an increase in EEG power values, in the irradiated subjects compared to controls. The difference in power was particularly evident in the beta frequency band and was found for both males and females. This finding is consistent with the hypothesis that structural changes due to irradiation can lead to an excess of fast or sharp activities in the EEG. The average age of the irradiated children at time of treatment was 7 years. In these years the CNS is still immature and in a state of rapid development and can be harmed by x-radiation doses as low as 50 rads or less. Studies performed on young animals demonstrated effects of low dose x-radiation to the brain, although there are

<table>
<thead>
<tr>
<th>EEG findings</th>
<th>Total</th>
<th></th>
<th>Male</th>
<th></th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IS</td>
<td>CS</td>
<td>IS</td>
<td>CS</td>
<td>IS</td>
</tr>
<tr>
<td>Normal</td>
<td>29 (69%)</td>
<td>43 (75%)</td>
<td>17 (77%)</td>
<td>25 (83%)</td>
<td>12 (60%)</td>
</tr>
<tr>
<td>Abnormal</td>
<td>13 (31%)</td>
<td>14 (25%)</td>
<td>5 (23%)</td>
<td>3 (17%)</td>
<td>8 (40%)</td>
</tr>
<tr>
<td>Total*</td>
<td>42</td>
<td>57</td>
<td>22</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>X*</td>
<td>0.5</td>
<td></td>
<td>0.31</td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>p value</td>
<td>0.24</td>
<td></td>
<td>0.29</td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>RR†</td>
<td>1.26</td>
<td></td>
<td>1.36</td>
<td></td>
<td>1.2</td>
</tr>
</tbody>
</table>

*Paper tracings for 4 persons were not available for clinical evaluation.
†Relative Risk with 95% Confidence Interval.
conflicting reportings with regard to EEG changes in those studies; some report abundance of fast activities whereas others report slow wave excess. The changes reported in these studies were usually temporary.2 35

In humans almost all reports of radiation effects on the EEG are based on patients who received high doses of therapeutic radiation.36-41 The tinea capitis populations are unique because they provide an opportunity to study the delayed radiation effects on the normal developing human brain. In a short term clinical EEG investigation4 of tinea capitis children, only temporary abnormalities were found, while in another study no EEG changes were observed at all.42 Our study suggests permanent change in human EEG activity following average doses of 130 rads of childhood x-irradiation to the brain. The clinical implications of increased beta activity are controversial.3 43-45 Among the tinea capitis irradiated subjects elevated risks of brain neoplasia, psychiatric disorders and symptoms have been reported. In addition, several measures of scholastic aptitude and achievement demonstrated a trend for the treated subjects to be less successful.20 21 Finally, differences in the visual evoked responses of the irradiated subjects compared to the control group suggest involvement of the reticular activating system.10 The precise meaning of the EEG changes found and the extent to which they are related to other brain disorders manifested in this population needs to be clarified. However, these findings are consistent with the general pattern of an association between moderate doses of x-radiation to the brain and a wide spectrum of brain pathology.

References

Schulz RJ, Albert RE. Follow-up study of patients treated by x-ray epilation for tinea capitis. III. Dose to organs of the head from x-ray treatment of tinea capitis. Arch Environ Health 1968;17:945-50.

Long-lasting cerebral functional changes following moderate dose x-radiation treatment to the scalp in childhood: an electroencephalographic power spectral study.
I Yaar, E Ron, B Modan, Y Rinott, M Yaar and M Modan

J Neurol Neurosurg Psychiatry 1982 45: 166-169
doi: 10.1136/jnnp.45.2.166

Updated information and services can be found at:
http://jnnp.bmj.com/content/45/2/166

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/