Contribution of tonic vibration reflex to the evaluation and diagnosis of cerebellar disorders

G ABBRUZZESE, M ABBRUZZESE, S RATTO, E FAVALE

From the Department of Neurology, University of Genoa, Italy

SUMMARY Biceps brachii tonic vibration reflexes were elicited in patients with either focal or diffuse cerebellar damage and spino-cerebellar degenerations. As compared to normal controls, tonic vibration reflex amplitude was reduced in cerebellar patients, particularly in cases with unilateral hemispheric lesion, who exhibited a clear cut tonic vibration reflex asymmetry even when clinical symptoms were mild. These reflexes were absent or very weak in patients with spino-cerebellar degenerations. Muscle vibration induced in most of the patients an enhancement of mild or latent clinical symptoms such as intention tremor, difficulty in muscle relaxation or motor incoordination.

Since the tonic vibration reflex was first described by Eklund and Hagbarth,1,2 several studies have dealt with its possible use as a tool to evaluate patients with neurological disorders.3 Conflicting results have been reported on the behaviour of tonic vibration reflexes in cerebellar patients. They were found by some authors to be reduced or absent in patients with cerebellar disorders, particularly on the side of the greater deficit;4,5 they were present but reduced in a case of Friedreich’s ataxia, only in the upper limbs where tendon jerks were present.6 Hagbarth and Eklund,6 however, described in cerebellar patients tonic vibration reflexes “either of normal strength or reduced”. Gemba and Sasaki7 observed normal or reduced tonic vibration reflexes in cerebellar ataxia and in patients with cortical cerebellar ataxia, while they could not induce any such reflex in cases of olivopontocerebellar atrophy.

In the present study we have re-investigated tonic vibration reflexes in patients with various focal or diffuse cerebellar involvement, and in patients with spinocerebellar degenerations, to test the role of cerebellum in eliciting these reflexes and to evaluate their possible contribution to the diagnosis of cerebellar disorders.

Patients and methods

The study was performed in 20 cerebellar patients (seven females and 13 males), aged 15–73 (mean 47.5 ± 16.1) years, and in a group of 20 healthy controls (five females and 15 males), aged 25–75 (mean 45.1 ± 15.0) years.

The cerebellar patients could be classified into three groups (see table): (a) patients with focal cerebellar damage with a unilateral hemispheric syndrome due to vascular or neoplastic lesion (cases 1–7); (b) patients with diffuse cerebellar involvement with an axial syndrome due to cortical atrophy, vascular or infectious diseases (cases 8–14); (c) patients with spinocerebellar degenerations, that is Friedreich’s ataxia (cases 15–18), dyssynergia cerebellaris myoclonica (case 19), suspected olivopontocerebellar atrophy (case 20). Diagnosis was on the basis of history and neurological examination, blood and cerebrospinal fluid laboratory tests, electrophysiological investigations and computed tomography scans.

The biceps brachii tonic vibration reflex of both sides was elicited in cerebellar patients and controls by means of a cylindrical vibrator (Heiva, Model TMT 18) (vibration frequency 100 Hz, amplitude 2 mm), applied with a constant pressure over the biceps tendon. Subjects were sitting comfortably in a chair, with the head in the midline position and the eyes closed; the forearm, supinated and flexed to 70° at the elbow joint, was fixed at the wrist on a rigid bar connected to a force transducer (Grass, FT 10 C), so that an isometric contraction of the biceps developed during vibration. Subjects were instructed to keep relaxed and not to resist any movement feeling they might perceive. The electromyogram of the biceps brachii was recorded by surface electrodes placed over the muscle belly and shielded from the vibrator by an earth lead to reduce the electrical artifacts from the vibrator. The amplified EMG and force transducer signals were monitored on an oscilloscope (Tektronix 502 A) and recorded by a polygraph (OTE Biomed., CB6 Recorder). At least five trials were repeated in all the subjects for each side, with an interval between trials of 30 seconds. Vibration was turned off ten
mean The seconds after the maximal Tonic vibration dent's tension observed between the brachii in Table any is the developed NORMAL CONTROLS Results litude Patients 1 PATIENTS on the kg, ipsilateral to the developed upper traces). [20 F 58 4 yr 4V, TC and VC dilatation OPCA (?) 0-584 0-342 13-4 9-0] kg, the difference between the two sides being significant (t = 2-17, p < 0-05). Compared to the mean amplitude of normal controls, the tonic vibration reflex on the affected side of cerebellar patients was reduced (t = 3-76, p < 0-001) (fig 1, lower traces), no reduction being observed in the normal side (t = 0-99). The mean rise time was 7-1 ± 1-2 s on the affected side and 9-7 ± 3-3 s on the normal side; the difference was significant (t = 2-53, p < 0-05). However, the rise time of the cerebellar patients was not statistically different from values of normal controls (t = 1-16). A clear-cut asymmetry of the EMG recording amplitude was observed only in patients 4, 5 and 7 of this group (see fig 1, lower traces). Two patients (cases 2 and 7) showed marked difficulties in relaxation after that vibration was stopped. Relaxation was delayed, or more gradual than normal, often occurring stepwise and sometimes even absent.

CEREBELLAR PATIENTS

1 Patients with unilateral focal lesion The mean tension developed by vibration in the biceps brachii ipsilateral to the cerebellar lesion was 0-710 ± 0-237 kg, while on the normal side it was 1-252 ± 0-614 kg, the difference between the two sides being significant (t = 2-17, p < 0-05). Compared to the mean amplitude of normal controls, the tonic vibration reflex on the affected side of cerebellar patients was reduced (t = 3-76, p < 0-001) (fig 1, lower traces), no reduction being observed in the normal side (t = 0-99). The mean rise time was 7-1 ± 1-2 s on the affected side and 9-7 ± 3-3 s on the normal side; the difference was significant (t = 2-53, p < 0-05). However, the rise time of the cerebellar patients was not statistically different from values of normal controls (t = 1-16). A clear-cut asymmetry of the EMG recording amplitude was observed only in patients 4, 5 and 7 of this group (see fig 1, lower traces). Two patients (cases 2 and 7) showed marked difficulties in relaxation after that vibration was stopped. Relaxation was delayed, or more gradual than normal, often occurring stepwise and sometimes even absent.

2 Patients with diffuse cerebellar involvement No asymmetry of tonic vibration reflex amplitude was observed between the two sides (right side: 1-081 ±

Table

<table>
<thead>
<tr>
<th>Cases</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Duration of illness</th>
<th>Cerebellar CT scan findings</th>
<th>Diagnosis</th>
<th>Tonic vibration reflex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amplitude (kg)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>55</td>
<td>2 m</td>
<td>Right PZ hypodense area</td>
<td>Right cerebellar metastasis</td>
<td>0-678</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>70</td>
<td>2 m</td>
<td>Left H hypodense area</td>
<td>Left cerebellar metastasis</td>
<td>0-824</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>57</td>
<td>1 m</td>
<td>Right PZ hypodense area</td>
<td>Right cerebellar softening</td>
<td>1-000</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>64</td>
<td>2 m</td>
<td>Left PZ hypodense area</td>
<td>Left cerebellar softening</td>
<td>1-726</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>47</td>
<td>7 yr</td>
<td>V and left PZ hypodense area</td>
<td>Surgical ablation of cholesteatoma</td>
<td>0-407</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>56</td>
<td>1 m</td>
<td>Left H hypodense area</td>
<td>Left cerebellar softening</td>
<td>0-916</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>43</td>
<td>3 m</td>
<td>Left H hypodense area</td>
<td>Left cerebellar metastasis</td>
<td>1-142</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>51</td>
<td>1 yr</td>
<td>Cerebellar atrophy, SS enlargement</td>
<td>Cerebellar atrophy</td>
<td>1-012</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>48</td>
<td>6 m</td>
<td>Normal</td>
<td>Vertebro-basilar insufficiency</td>
<td>0-649</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>60</td>
<td>2 m</td>
<td>Normal</td>
<td>Creutzfeldt Jacob disease</td>
<td>1-390</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>38</td>
<td>3 yr</td>
<td>Corticocerebellar atrophy</td>
<td>Familial corticocerebellar atrophy</td>
<td>1-197</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>49</td>
<td>10 yr</td>
<td>Corticocerebellar atrophy, WM hypodensity, SS enlargement</td>
<td>Familial corticocerebellar atrophy</td>
<td>1-178</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>42</td>
<td>5 yr</td>
<td>Corticocerebellar atrophy, WM hypodensity, SS enlargement</td>
<td>Familial corticocerebellar atrophy</td>
<td>1-100</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>73</td>
<td>1 m</td>
<td>Normal</td>
<td>Vertebro-basilar insufficiency</td>
<td>1-047</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>53</td>
<td>23 yr</td>
<td>Left H atrophy</td>
<td>Friedreich's ataxia Absent†</td>
<td>0-410</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>16</td>
<td>12 yr</td>
<td>Normal</td>
<td>Friedreich's ataxia Absent†</td>
<td>0-410</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>25</td>
<td>20 yr</td>
<td>Normal</td>
<td>Friedreich's ataxia Absent†</td>
<td>0-230†</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>31</td>
<td>21 yr</td>
<td>WM hypodensity</td>
<td>Absent†</td>
<td>0-230†</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>15</td>
<td>12 yr</td>
<td>Normal</td>
<td>Dysynergia cerebellaris myoclonica</td>
<td>0-270</td>
</tr>
</tbody>
</table>

*Patients 11, 12, 13 were brothers.
†With facilitatory voluntary contraction.
V = Vermis; PZ = Paramedian zone; H = Hemisphere; 4V = 4th ventricle; TC = Truncal cisterns; SS = Subarachnoid spaces; WM = White matter; OPCA = Olivopontocerebellar atrophy.

Results

NORMAL CONTROLS Tonic vibration reflexes could be elicited for biceps brachii in every normal subject. The mean amplitude was: 1-496 ± 0-519 kg in the right side and 1-491 ± 0-553 kg in the left side, no difference being observed between the two sides (t = 0-03) (fig 1, upper traces). The mean rise time was: 8-7 ± 2-9 s on the right side and 8-3 ± 3-5 s on the left side, without any asymmetry (t = 0-33).
the isometrically by force transducer. Lower torque
Patients mean if in 0O227 (controls particularly reduced recordings biceps brachii Fig
9-8 and reflexes in patients Friedreich's ataxia be elicited could contraction (case 20). Patients the tonic vibration reflex amplitude and a clear cut asymmetry of EMG recordings are present in the pathological (left) side of the cerebellar patient.

0.227 kg, left side: 0.927 ± 0.303 kg; t = 0.98) even if in patients 11 and 13 tonic vibration reflexes were particularly reduced in the side of greater deficit. The reflexes on both sides, however, were reduced as compared to normal controls (t = 2.34, p < 0.05). The mean rise time was 9.7 ± 1.9 s on the right side and 9.8 ± 1.8 s on the left side, without either asymmetry (t = 0.16) or differences versus normal controls (t = 0.91). Patients 8 and 11 showed relaxation difficulties after vibration was stopped and an evident "intention" tremor was induced by vibration in patients 8 and 10 (fig 2).

3 Patients with spinocerebellar degenerations Tonic vibration reflexes were absent in two patients with Friedreich's ataxia (cases 15 and 17), even when they were asked to exert a facility mild voluntary contraction of the biceps brachii. Very weak reflexes could be elicited in the other two Friedreich patients (cases 16 and 18), at least on one side (fig 3), and in the patients with dysynergia cerebellaris myoclonica (case 19) and olivopontocerebellar atrophy (case 20). This last patient showed relevant relaxation difficulties and a vibration induced tremor.

Discussion

In the present study we have shown that the biceps brachii tonic vibration reflexes of patients with cerebellar disorders are reduced in amplitude, thus confirming previous reports pointing to a possible role of the cerebellum in eliciting the reflex.

It is generally accepted that the cerebellum, receiving extensive group I afferent projections, increases (through its influence on the γ-system) the sensitivity of the muscle spindles to stretch and vibration, and it has been shown in cats and monkeys that cerebellar lesions may induce a depression of tonic γ-motoneurone activity, leading to a disturbance of α-γ linkage. Only the persistance of the tonic vibration reflex in the cat after partial cerebellectomy seems to contrast with such a hypothesis. However, in spite of the discrepancies between the findings in cat and man, it is not surprising that the reflex, providing a method for testing the excitability of tonic motoneurones, might be impaired in patients with cerebellar lesions.

Various hypotheses may be suggested to relate cerebellar damage with impairment of tonic vibration reflexes. Since vestibulospinal and reticulospinal tracts have been shown to be the main pathways responsible for facilitation and maintenance of tonic vibration reflexes in the cat, a lesion of the archicerebellum might be responsible for reflex reduction. On the other hand, group I afferent fibres are known to project to the intermediate or paramedian zone of the cerebellum, and hypotonia in cerebellar disorders occurs mainly in lesions of the neocerebellum, so that it could be postulated that a lesion of the deep cerebellar nuclei (dentatus and interpositus), influencing the static γ-system through pyramidal and rubrospinal pathways, is to some extent involved in tonic vibration reflex depression. In our study, patients with a unilateral focal lesion (placed in four cases in the paramedian zone) showed the greatest impairment of tonic vibration reflexes. However, this reflex also was reduced in
patients with diffuse cortical atrophy. To relate tonic vibration reflex impairment to a specific cerebellar lesion does not seem therefore to be possible.

The relevance of lesions affecting connections of the cerebellum with other parts of the central nervous system should not be disregarded, as suggested by Gemba and Sasaki. In our study, the tonic vibration reflexes of patients with spinocerebellar degenerations were absent or barely detectable, even when the tendon jerks were still present in the examined limb. No correlation exists between the behaviour of the tonic vibration reflex and tendon reflexes, since the former could be demonstrated even in patients with clinically absent tendon jerks, or in patients with benign areflexia. The interruption of proprioceptive pathways in the spinal cord or brain stem of patients with Friedreich's ataxia is likely to be relevant to the suppression of tonic vibration reflexes.

Although the integrity of cerebellum is not likely to be necessary for eliciting tonic vibration reflex, our findings demonstrate that a lesion, either focal or diffuse, primarily situated in the cerebellum, removes a facilitatory effect on tonic vibration reflex contractions. The reduction of tonic vibration reflex amplitude was particularly evident ipsilateral to the side of cerebellar lesion or, as previously observed, of greater deficit. Unlike Gemba and Sasaki, we could observe a clear cut asymmetry of tonic vibration reflex amplitude in all the subjects with unilateral cerebellar lesions. A possible explanation for the discrepancy of these results could be the greater reliability of torque recordings as compared to EMG recordings. In fact tonic vibration reflex depression could be observed even in cases with mild cerebellar symptoms (case 4) or in cases almost asymptomatic (case 7). Since the reliability and reproducibility of tonic vibration reflexes have been repeatedly confirmed and no amplitude asymmetry was observed in normal subjects, measurements of amplitude have proved to be a useful diagnostic parameter. On the contrary, the rising time to plateau tension was found to be slightly reduced only in the side ipsilateral to cerebellar lesion, but not significantly as compared to normal controls. Johnston et al. showed, however, that in weaker tonic vibration reflexes the plateau tension is reached more quickly, probably because less motor units are recruited.

Besides quantitative measurements of tonic vibration reflex parameters, muscle vibration induced in most of the cerebellar patients abnormal motor effects, accentuating subclinical symptoms like intention tremor or motor incoordination. In particular, a striking difficulty in relaxation was noticed after vibration was stopped, probably because of delay and slowness of the intervention of antagonistic muscles, resembling the classical difficulty of cerebellar patients to stop voluntary movements.

Recording tonic vibration reflexes may therefore help in the diagnosis of cerebellar lesions even in patients with mild or latent clinical symptomatology.

References

Contribution of tonic vibration reflex to the evaluation and diagnosis of cerebellar disorders.

G Abbruzzese, M Abbruzzese, S Ratto and E Favale

J Neurol Neurosurg Psychiatry 1982 45: 526-530
doi: 10.1136/jnnp.45.6.526

Updated information and services can be found at:
http://jnnp.bmj.com/content/45/6/526

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/