Short report

Mutism following left hemisphere infarction

AS DAVID,* I BONE

From the Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK

SUMMARY A case of mutism due to left hemisphere infarction is described. Recovery revealed mild motor dysphasia. Review of the literature showed that the case resembles aphemia but is unique by virtue of its duration, and the absence of associated apraxia and paresis.

Mutism is a rare clinical entity. It may occur transiently in lesions of Broca's area,¹ or the inferior rolandic region.² We describe a case of total mutism following left common carotid artery occlusion in the absence of hemiparesis and oro-bucco-lingual apraxia which we believe to be due to a highly specific apraxia of speech.

Case report

A 51-year-old, right-handed housewife, with a history of controlled hypertension, was on holiday abroad when she awoke, unable to speak. A relative noticed right sided facial weakness. On her return, the patient was admitted to her local hospital and on the 12th day after the onset of her illness was transferred to this Institute for further investigation.

On admission she was alert and undistressed. Blood pressure was 140/90 mm Hg. Slight upper motor neuron facial weakness was detected on the right. She was unable to speak or indeed utter any sound though she could cough to command. The patient could not whisper, hum or mouth words either spontaneously or in imitation. Her comprehension appeared to be good in that she could follow simple written and verbal instructions. Questions were answered by nodding "yes" or "no". Writing was printed initially with some paraphasic errors but was adequate for day-to-day communication. The patient could perform a range of buccal, lingual, and facial movements on request. Such manoeuvres as licking lips and rolling the tongue were carried out with ease, as were chewing and swallowing. General neurological examination was entirely normal, in particular there was no weakness or dyspraxia of any limb. Reflexes were symmetrical and the plantar responses flexor. Indirect laryngoscopy showed normal larynx and vocal chord movement.

CT scanning without contrast showed a very small area of reduced density in relation to the left sylvian fissure. A repeat scan with contrast revealed a large area of enhancement in the left fronto-parietal region extending to

*Present address and address for reprint requests: Dr AS David, Department of Psychiatry, The Bethlem Royal and Maudsley Hospitals, Monks Orchard Road, Beckenham, Kent BR3 3BX, UK.

Received 2 December 1983 and in revised form 1 June 1984. Accepted 11 June 1984

Fig 1 CT scan with contrast enhancement showing large lesion in left fronto-parietal region.
Mutism following left hemisphere infarction

the brain surface (fig). An isotope brain scan showed an irregular area of increased uptake in the left inferior frontal region. Angiography was performed and though technically difficult showed absent filling of the left common and internal carotid arteries. There was no evidence of arterio-venous malformation.

The diagnosis was made of cerebral infarction secondary to common carotid artery occlusion. Assessment on the Boston Diagnostic Aphasia Examination one day after admission showed some auditory comprehension failure on complex sequential commands and abstract reasoning material. Reading comprehension and narrative writing also showed slight impairment. Verbal expression was of course absent. Follow-up assessment 12 days later showed substantial improvement to virtually normal in reading, writing, and comprehension. The patient could write long-hand with only a few paraphasic errors. Screening parietal tests showed no abnormalities. Nevertheless, she was still mute and remained so for a further 5 weeks, until speech returned abruptly. Examination at that time revealed non-fluent, laboured speech with dysprosody, articulation errors and some phoneme substitutions ("I have difficulty...in finding right words"). Transient word blocking was evident, though repetition reduced errors. Verbal expression was however functional and easily understood.

Discussion

Mutism is a rare clinical entity. It may occur in patients with gross dementia, bilateral basal ganglia lesions, pseudo-bulbar palsy, or in the syndrome of akinetic mutism. In these instances, the underlying cause is usually self-evident. Other causes include psychotic illness, elective mutism, relatively common in children, and hysteria. The above case is remarkable in that for 7 weeks the patient remained totally mute in the absence of significant receptive dysphasia, dysgraphia, dyspraxia or hemiparesis. Recovery was sudden with only residual language impairment. The inability to speak with retained capacity to read, write and understand has been called pure motor aphasia where recovery uncovers agrammatic and paraphasia. A second pattern of recovery exists whereby speech, when it returns, though laboured is not aphasic. Terms such as aphemia, cortical dysarthria, and pure word dumbness, have been used to describe this. Many modern authors regard it as an apraxia of speech.

Recent clinico-pathological studies of lesions in Broca's area (3rd inferior frontal convolution), showed that many patients were nearly mute at the onset of their illness but made good recoveries. Most could utter some sounds or words or were mute for a few days only. They all had some degree of right sided motor weakness with one exception, and prominent oro-bucco-lingual dyspraxia. Our patient differed in the sustained and absolute nature of her mutism and the absence of obvious motor or dyspraxic signs. LeCours described a case of mutism without apraxia who recovered without dysphasia due to a lesion in the inferior rolandic region, sparing Broca's area. Mutism is seen in lesions of the supplementary motor area, but dysgraphia and hemiparesis are outstanding. Subcortical lesions give rise to a variety of language and motor deficits but not mutism.

Critchley stated that even severe aphasics can say something and that "total speechlessness" usually lies outwith "organic neurology". An appealingly eclectic alternative explanation to our patient's mute state was that it was a hysterical reaction to genuine aphasia. The ability to cough despite apparent aphony is a classic sign of hysteria though such patients usually whisper.

The varieties of emotional response are as numerous as there are patients, yet common reactions are either frustration, the so-called catastrophic reaction, or withdrawal. However, in the latter, the patient is too embarrassed or depressed to speak abnormally so withdraws, but in more total way than just keeping silent, from interpersonal communication.

We postulate that this case of mutism was due to an apraxia, so localised that it only affected those movements directly subserving the execution of speech and voice production. The centre of the causative lesion probably lies in the inferior part of the pre-central gyrus, overlapping Broca's area yet not impinging upon the motor area. We wish to draw attention to this syndrome firstly because it demonstrates the discreteness of certain language functions in the brain each of which may be put out of action by localised infarctions, and secondly because it may be mistaken for hysteria.

References

Mutism following left hemisphere infarction.

A S David and I Bone

J Neurol Neurosurg Psychiatry 1984 47: 1342-1344
doi: 10.1136/jnnp.47.12.1342

Updated information and services can be found at:
http://jnnp.bmj.com/content/47/12/1342

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/