opening increased by 28 mm with satisfac-
tory lateral excursions of the mandible. The patient was pleased with her progress and no operative treatment was thought to be necessary. She had been advised to con-
tinue with the same self physiotherapeutic measures and will remain under review.

Cortoidecotomy in order to release the temporalis muscle attachment from the mandible has been the preferred method of treatment for this condition, as temporalis myotomy is likely to produce only a limited period of improvement before fibrosis recommences at the site of myotomy. Cortoidecotomy has been carried out in the cases previously reported.1-4 In the case of Sanders et al2 a bilateral procedure was carried out in order to release fibrosis which occurred following a transcoronal incision and bifrontal craniotomy for excision of an ollactory meningioma.

In the case reported here, the patient was seen in the Maxillofacial Surgery Department about a year after the neurosurgical procedure with significant limitation to mandibular opening. However, institution of active jaw exercise utilising a trismus screw was seen to have produced significant improvement in condition. It is suggested that this condition be initially treated by active jaw opening exercises, if possible in the early neurosurgical postoperative period. By doing so, surgical correction of the disability may be avoided.

M.Y.M ZAFARULLA
Dept. of Oral and Maxillofacial Surgery,
Bolton District General Hospital,
Bolton, Lancashire, BL4 0JR, UK

References

Accepted 16 February 1985

Matters arising

Measurement of thermal thresholds

Sir: I read the papers 'An improved auto-
mated method for the measurement of thermal thresholds 1. normal subjects. . .2. patients with peripheral neuropathy'1,2 with great interest, since quite independently, we also have been developing a microcomputer-based ther-
mal testing system.3 By placing the power supply, signal converters, thermometer and other meters in a single peripheral device and using a portable computer, the system we have developed is transportable, but operates on very similar principles to that described by Jamal et al.1,2

The results obtained by these authors are impressive. There are, however two points arising from the discussion, which should be considered further.

Spatial summation is an important determinant of thermal sensitivity, particu-
larly for warming, and values obtained for threshold are therefore very dependent on contact area.4 Our thermode has a contact area of 7.5 cm² and is sufficiently small to be used on the face and the dorsum of the hand. With this thermode we are obtaining higher values for threshold measurements than those given by Jamal et al, who used a 12.5 cm² thermode.1 Dyck et al use a 3.5 cm² thermode and give rise to results from the dorsum of the foot for 303 healthy sub-
jects.4 The details of thermode size and the number of patients studied are relevant to the comparison made by Jamal et al between their results and those of Dyck et al for inter-subject variation. One would expect lower values from a 12.5 cm² contact area thermode and the absolute range of thresholds cannot be entirely unrelated to the number of subjects in the selected age bands, studied by each group. By using a relatively large thermode, Jamal et al may have lost the discrimination necessary to demonstrate the variations in regional sensi-
tivity, which other workers have found.3-5

To present their data on intra-individual variation, Jamal et al take the mean value of thresholds from all subjects together, measured on one or more occasion and give the maximum differences between these means, with the difference expressed as a percentage of the first observation.1

Fagius and Wahren1 presented their data for intra-individual variability as the range of differences found with paired observa-
tions in individuals, expressing the differ-
ence as a percentage of the first measurement. It was therefore incorrect of Jamal et al to use the figure of 150% for intra-
individual variation from the work of Fagius and Wahren in direct comparison with theirs of 5%,1 since the two studies calculated variability in a different way.

CLARE J FOWLER
The Rita Lila Weston Institute of Neurological Studies
The Middlesex Hospital Medical School
London W1N 8AA, UK

References
3 Fowler CJ, Burns D, Howe N. A system for measuring thresholds for hot and cold sensa-
4 Fowler CJ, Burns D, Howe N, Harrison MJG, Le Quesne PM. A system for measuring thresholds for hot and cold sensation. Proceedings of IECEN 1985, Electroence-
7 Dyck PJ, Karnes J, O'Brien PC, Zimmerman IR. Detection thresholds of cutaneous sensa-

Jamal et al reply

We have read Dr Fowler's comments with interest. Dr Fowler suggests that the differences in results obtained by ourselves compared with Dyck et al are a consequence of thermode size. We agree that spatial summation determined in part by thermode...
Measurement of thermal thresholds.

C J Fowler

J Neurol Neurosurg Psychiatry 1985 48: 1070-1071
doi: 10.1136/jnnp.48.10.1070

Updated information and services can be found at:
http://jnnp.bmj.com/content/48/10/1070.1.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/