Chronic mucormycosis manifesting as hydrocephalus

Sir: Fungal infections of the brain usually present as chronic meningitis. Mucormycosis of the brain, however, typically presents as acute rhinocerebral disease and is fatal. A search of the English literature revealed only three cases of chronic meningitis due to mucormycosis. All had rhinocerebral involvement and underlying metabolic disease. Fungal meningitis presenting primarily as hydrocephalus is rare. We here report such a patient. There were three uncommon features: (1) The primary presentation as hydrocephalus, (2) The presence of chronic basal meningitis without rhinocerebral involvement, (3) The occurrence in an immunocompetent host.

A 22-year-old female was admitted to hospital on 5 January, 1984 with complaints of convulsions, vomiting and headache of three months duration together with diplopia and unsteadiness for 15 days. She denied fever, cough, expectoration, pain in the neck or discharge from the ears. She was conscious and oriented. The pulse rate was 50/min, the BP 140/80 mm Hg and respiratory rate 30/min. There was bilateral papilloedema. The cranial nerves and the motor and sensory systems were normal. The tendon reflexes were all present and the plantar responses were extensor. Brudzinski and Kernig signs were negative. There was bilateral incoordination of the limbs, truncal ataxia and nystagmus. Romberg's sign was negative. Examination of the abdomen and the cardiovascular and respiratory system did not reveal any abnormality. The possibility of an intracranial space occupying lesion with raised intracranial pressure was entertained. The bilateral cerebellar deficit was considered to be a false localising sign.

Investigations revealed Hb 12 g%, total white count 6900/cmm, differential leucocyte count: polymorphs 50%, lymphocytes 42% and eosinophils 8% and ESR 77 mm in the first hour. Blood sugar was 108 mg/dl fasting and post prandial 120 mg/dl. The blood urea, creatinine level and liver function tests were within normal limits. The chest radiograph was normal but radiographs of the skull revealed osteoporosis of the posterior clinoid processes. A CT scan showed hydrocephalus.

Lumbar puncture was not performed because of papilloedema and the absence of signs of meningeal irritation. The patient was put on anticonvulsants and mannitol. After the report of the CT had been received, steroids and antituberculous therapy were started. The patient deteriorated and died on 22 January 1984 from cardiorespiratory arrest following presumed tonsillar herniation.

At necropsy the brain was oedematous and weighed 1200 g. There was bilateral tonsillar herniation. The basal meninges were thickened and pearly white in colour. Whitish gelatious exudate was seen filling the basal cisterns and covering the front of thepons and medulla. The cranial nerves and the basal vessels were entangled in the exudate. Sections revealed dilated lateral ventricles whose walls were smooth. There were no infarcts or abscesses in the brain substance. Microscopically the brain showed granulomatous lesions consisting of giant cells and epithelial cells with necrotic centres containing fungi with broad non-septate hyphae. Sections from the nose and sinuses did not show evidence of necrosis or mucormycosis. A methanamine silver stain of brain confirmed that infection was mucormycosis. Gomori methanamine silver stains all forms of fungi black. Mucormycosis shows broad non-septate hyphae. The diameter of these hyphae is 10-15 μ, which differentiates them from Aspergillus, whose hyphae are septate and of 3-4 μ in diameter. The uniform dichotomous pattern of branching of hyphae in tissues also helps to differentiate Aspergillus from mucormycosis.

Rhinocerebral mucormycosis usually presents as acute meningitis, meningoencephalitis or cerebral abscess. Only three cases of chronic mucormycosis have so far been reported. These presented with typical sinus and rhinocerebral involvement and histologically showed chronic granulomatous inflammation. All had underlying metabolic disease. Our patient, however, had no such underlying illness.

The history of convulsions, headache and vomiting suggested a space occupying lesion. The CT scan, however, only revealed hydrocephalus. In India tuberculous meningitis is the commonest cause of acquired hydrocephalus and our patient was given anti-tuberculous treatment. Of four reported patients with fungal meningitis, primarily presenting as hydrocephalus, three had cryptococcal infection and one had aspergillosis. The diagnosis especially of cryptococcosis has become easier, but the diagnosis of mucormycosis remains notoriously difficult owing to the altered haemodynamics of CSF flow following basal meningitis and the fact that the CSF is nearly always devoid of the relevant organisms. Our patient died before any shunt operation could be performed. The conclusion would seem to be that fungal infection should be excluded in all patients with hydrocephalus of unknown aetiology before shunt operations are undertaken.

LATA S BICHILE
SHASHIKALA C ABHYANKAR
N K HASE

Departments of Medicine and Pathology, Lokmanya Tilak Municipal Medical College and Hospital, Sion, Bombay 400 022, India.

References

Impaired neurotransmitter amine metabolism in arginase deficiency

Sir: Arginase deficiency, an inborn error of the urea cycle leading to accumulation of arginine, causes a severe progressive neurodegenerative disorder characterised by mental retardation and a spastic diplegia. The mechanisms responsible for the neurological damage are uncertain. It is unlikely to be due to hyperammonaemia alone since only moderate ammonia accumulation occurs in this disorder which more closely resembles an aminoacidopathy such as phenylketonuria than the other urea cycle disorders. In a patient with arginase deficiency we have recently observed a disturbance of cerebrospinal fluid (CSF) catecholamine and serotonin metabolism similar to that in patients with "classical" phenylketonuria. The findings are consistent with the view that inhibition of aminoacid uptake by the brain is a com-
mon factor in the pathogenesis of neurological damage in these two disorders.

An 11 yr-old girl with arginase deficiency (confirmed by enzyme assay by Prof AD Patrick) was investigated before and after the start of treatment. She was severely retarded and inert with unintelligible speech. On neurological examination she had a pseudobulbar palsy and a spastic quadriplegia. Plasma and cerebrospinal fluid (CSF) arginine concentrations were markedly elevated (table). CSF concentrations of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5HIAA) (table), the major metabolites of dopamine and serotonin respectively were low, 5HIAA markedly so. These rose as plasma and CSF arginine fell when she was started on a low protein diet with supplements of essential amino acids and sodium benzoate. Subsequently amine metabolite concentrations fell as arginine concentrations rose once again owing to difficulties with the diet.

The pattern of amine metabolite changes, including the greater initial reduction of CSF 5HIAA concentrations compared to those of HVA, resemble closely the pattern seen in two patients with classical phenylketonuria (table) who were investigated after they had developed neurological symptoms following withdrawal of the low phenylalanine diet. The profound reduction of 5HIAA in the presence of hyperammonaemia contrasts with the findings in patients with ornithine carbamoyl transferase deficiency, another urea cycle disorder, in whom 5HIAA rises in association with hyperammonaemia due to increased transport of tryptophan into the brain. 3

Competition between phenylalanine and the other neutral amino acids for transport across the blood brain barrier probably accounts for the low concentrations of tryptophan and tyrosine found in the brain of patients with phenylketonuria post mortem. 4 The hydroxylation of tyrosine to dopa and tryptophan to 5-hydroxytryptophan are the rate-limiting steps in the synthesis of dopamine and serotonin and there is evidence that the rate of hydroxylation of tryptophan, and to a lesser extent tyrosine, is normally regulated by substrate concentrations. 5,6 Lowered intraneuronal concentrations of these two amino acids could therefore reduce the rate of amine synthesis. Defective protein synthesis is another consequence of impaired amino acid transport into the brain 7 and here too tryptophan deficiency appears to be of special importance. 8

The changes in amine metabolite concentrations in our patient with hyperargininaemia imply therefore that competition for entry into neurons also occurs between arginine and neutral amino acids with consequences for protein synthesis as well as amine metabolites. Although the dibasic amino acids are generally thought to have a separate carrier it has been shown previously that phenylalanine in excess inhibits the transport of arginine and ornithine in brain slices. 9 Hence the clinical similarities between classical phenylketonuria and arginase deficiency are likely to reflect common factors in the pathogenesis of neurological damage.

K HYLAND
ISABEL SMITH
PT CLAYTON
J V LEONARD
Institute of Child Health
and The Hospital for Sick Children,
Great Ormond Street,
London WC1N 1EH, UK

References

Table CSF neurotransmitter amine and aminoacid concentrations and plasma aminoacid concentrations in arginase deficiency and “classical” phenylketonuria before and after treatment

<table>
<thead>
<tr>
<th>Arginase deficiency</th>
<th>Pre-treatment</th>
<th>Post-treatment</th>
<th>Normal range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF HVA (μg/l)</td>
<td>33–5</td>
<td>59–9</td>
<td>49–8</td>
</tr>
<tr>
<td>5HIAA (μg/l)</td>
<td>5</td>
<td>16–5</td>
<td>13–1</td>
</tr>
<tr>
<td>Arginine (μmol/l)</td>
<td>63</td>
<td>36</td>
<td>56</td>
</tr>
<tr>
<td>Plasma Arginine (μmol/l)</td>
<td>663</td>
<td>161</td>
<td>501</td>
</tr>
<tr>
<td>Phenylketonuria (patient 1—aged 16 yrs, patient 2—aged 18 yrs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSF HVA (μg/l)</td>
<td>27</td>
<td>75</td>
<td>72–121</td>
</tr>
<tr>
<td>5HIAA (μg/l)</td>
<td>38</td>
<td>44</td>
<td>25–40</td>
</tr>
<tr>
<td>Arginine (μmol/l)</td>
<td>4</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Plasma Phenylalanine (μg/l)</td>
<td>1400</td>
<td>120</td>
<td>30–120</td>
</tr>
</tbody>
</table>

*The range is derived from six retarded children without movement disorder aged 5–12 years.
Impaired neurotransmitter amine metabolism in arginase deficiency.

K Hyland, I Smith, P T Clayton and J V Leonard

J Neurol Neurosurg Psychiatry 1985 48: 1188-1189
doi: 10.1136/jnnp.48.11.1188-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/48/11/1188.2.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/