Letters

Sir: We were interested in the paper by Rougemont et al. in which no alteration of local cerebral glucose utilisation was found between treated and non-treated Parkinsonian patients. However, the same parameter was found to be moderately increased in the basal ganglia of these patients compared to controls. In a recent study one of us demonstrated that low concentrations of dopamine combined with insulin in vitro increased glucose transport in the isolated rat adipocytes. However high concentrations of dopamine combined with high insulin concentrations inhibited glucose transport. If this occurred in vivo, then alterations in dopaminergic function (for example decreased dopaminergic activity) could result in impaired glucose transport in neuronal cells. This would be in agreement with the findings by Lenzi et al. who demonstrated decreased glucose metabolism in the parietal lobe of patients with hemi-Parkinsonism. Moreover Rougemont et al. demonstrated slightly increased glucose metabolism in the basal ganglia of Parkinsonian patients. This, we postulate, could result from reduction of dopamine content in these areas with resultant compensatory enhancement of insulin activity in these areas. It is thus possible that increased glucose utilisation in the basal-ganglia of Parkinsonian subjects could reflect impaired dopaminergic activity. The degree of the regional glucose utilisation could thus serve as a marker for loss of dopaminergic activity in these areas.

Dementia is a common associated symptom of Parkinson’s disease. It is possible that by normalising glucose transport into the cortical cells which have been shown to have decreased utilisation in Alzheimer’s type dementia, that the condition can be improved. This could possibly be achieved by administration of insulin, glucose and levodopa.

R. SANDYK
MA GILLMAN
South African Brain Research Institute
Johannesburg, South Africa

References

Sympathetic skin response

Sir: Techniques for evoking the psychogalvanic response and determining conduction velocity along autonomic nerve fibres have long been available but have met with limited interest in electroneurography. The simplicity of Shahani et al.’s technique of eliciting the sympathetic skin response makes it particularly suitable in the study of the autonomic nervous system during routine EMG sessions. In effect, psychogalvanic responses can be easily induced by any internal or external stimulus of sufficient ‘novelty’: comparable sympathetic skin response in one hand can be obtained by electrical stimulation of the ipsi- or contralateral wrist, of the glabella and by a sudden auditory burst applied by earphones (fig). Thus, exploring several eliciting modalities of sympathetic skin response may have a localising value. The technique has however some drawbacks, which, if unrecognised, could result

Matters arising

Cerebral glucose utilisation in Parkinson’s disease

Sir: We were interested in the paper by Rougement et al. in which no alteration of local cerebral glucose utilisation was found between treated and non treated Parkinsonian patients. However, the same parameter was found to be moderately increased in the basal ganglia of these patients compared to controls. In a recent study one of us demonstrated that low concentrations of dopamine combined with insulin in vitro increased glucose transport in the isolated rat adipocytes. However high concentrations of dopamine combined with high insulin concentrations inhibited glucose transport. If this occurred in vivo, then alterations in dopaminergic function (for example decreased dopaminergic activity) could result in impaired glucose transport in neuronal cells. This would be in agreement with the findings by Lenzi et al. who demonstrated decreased glucose metabolism in the parietal lobe of patients with hemi-Parkinsonism. Moreover Rougement et al. demonstrated slightly increased glucose metabolism in the basal ganglia of Parkinsonian patients. This, we postulate, could result from reduction of dopamine content in these areas with resultant compensatory enhancement of insulin activity in these areas. It is thus possible that increased glucose utilisation in the basal-ganglia of Parkinsonian subjects could reflect impaired dopaminergic activity. The degree of the regional glucose utilisation could thus serve as a marker for loss of dopaminergic activity in these areas.

Dementia is a common associated symptom of Parkinson’s disease. It is possible that by normalising glucose transport into the cortical cells which have been shown to have decreased utilisation in Alzheimer’s type dementia, that the condition can be improved. This could possibly be achieved by administration of insulin, glucose and levodopa.

R. SANDYK
MA GILLMAN
South African Brain Research Institute
Johannesburg, South Africa

References

Sympathetic skin response

Sir: Techniques for evoking the psychogalvanic response and determining conduction velocity along autonomic nerve fibres have long been available but have met with limited interest in electroneurography. The simplicity of Shahani et al.’s technique of eliciting the sympathetic skin response makes it particularly suitable in the study of the autonomic nervous system during routine EMG sessions. In effect, psychogalvanic responses can be easily induced by any internal or external stimulus of sufficient “novelty”: comparable sympathetic skin response in one hand can be obtained by electrical stimulation of the ipsi- or contralateral wrist, of the glabella and by a sudden auditory burst applied by earphones (fig). Thus, exploring several eliciting modalities of sympathetic skin response may have a localising value. The technique has however some drawbacks, which, if unrecognised, could result

Matters arising

Cerebral glucose utilisation in Parkinson’s disease

Sir: We were interested in the paper by Rougement et al. in which no alteration of local cerebral glucose utilisation was found between treated and non treated Parkinsonian patients. However, the same parameter was found to be moderately increased in the basal ganglia of these patients compared to controls. In a recent study one of us demonstrated that low concentrations of dopamine combined with insulin in vitro increased glucose transport in the isolated rat adipocytes. However high concentrations of dopamine combined with high insulin concentrations inhibited glucose transport. If this occurred in vivo, then alterations in dopaminergic function (for example decreased dopaminergic activity) could result in impaired glucose transport in neuronal cells. This would be in agreement with the findings by Lenzi et al. who demonstrated decreased glucose metabolism in the parietal lobe of patients with hemi-Parkinsonism. Moreover Rougement et al. demonstrated slightly increased glucose metabolism in the basal ganglia of Parkinsonian patients. This, we postulate, could result from reduction of dopamine content in these areas with resultant compensatory enhancement of insulin activity in these areas. It is thus possible that increased glucose utilisation in the basal-ganglia of Parkinsonian subjects could reflect impaired dopaminergic activity. The degree of the regional glucose utilisation could thus serve as a marker for loss of dopaminergic activity in these areas.

Dementia is a common associated symptom of Parkinson’s disease. It is possible that by normalising glucose transport into the cortical cells which have been shown to have decreased utilisation in Alzheimer’s type dementia, that the condition can be improved. This could possibly be achieved by administration of insulin, glucose and levodopa.

R. SANDYK
MA GILLMAN
South African Brain Research Institute
Johannesburg, South Africa

References

Sympathetic skin response

Sir: Techniques for evoking the psychogalvanic response and determining conduction velocity along autonomic nerve fibres have long been available but have met with limited interest in electroneurography. The simplicity of Shahani et al.’s technique of eliciting the sympathetic skin response makes it particularly suitable in the study of the autonomic nervous system during routine EMG sessions. In effect, psychogalvanic responses can be easily induced by any internal or external stimulus of sufficient “novelty”: comparable sympathetic skin response in one hand can be obtained by electrical stimulation of the ipsi- or contralateral wrist, of the glabella and by a sudden auditory burst applied by earphones (fig). Thus, exploring several eliciting modalities of sympathetic skin response may have a localising value. The technique has however some drawbacks, which, if unrecognised, could result

Matters arising

Cerebral glucose utilisation in Parkinson’s disease

Sir: We were interested in the paper by Rougement et al. in which no alteration of local cerebral glucose utilisation was found between treated and non treated Parkinsonian patients. However, the same parameter was found to be moderately increased in the basal ganglia of these patients compared to controls. In a recent study one of us demonstrated that low concentrations of dopamine combined with insulin in vitro increased glucose transport in the isolated rat adipocytes. However high concentrations of dopamine combined with high insulin concentrations inhibited glucose transport. If this occurred in vivo, then alterations in dopaminergic function (for example decreased dopaminergic activity) could result in impaired glucose transport in neuronal cells. This would be in agreement with the findings by Lenzi et al. who demonstrated decreased glucose metabolism in the parietal lobe of patients with hemi-Parkinsonism. Moreover Rougement et al. demonstrated slightly increased glucose metabolism in the basal ganglia of Parkinsonian patients. This, we postulate, could result from reduction of dopamine content in these areas with resultant compensatory enhancement of insulin activity in these areas. It is thus possible that increased glucose utilisation in the basal-ganglia of Parkinsonian subjects could reflect impaired dopaminergic activity. The degree of the regional glucose utilisation could thus serve as a marker for loss of dopaminergic activity in these areas.

Dementia is a common associated symptom of Parkinson’s disease. It is possible that by normalising glucose transport into the cortical cells which have been shown to have decreased utilisation in Alzheimer’s type dementia, that the condition can be improved. This could possibly be achieved by administration of insulin, glucose and levodopa.

R. SANDYK
MA GILLMAN
South African Brain Research Institute
Johannesburg, South Africa

References

Cerebral glucose utilization in Parkinson's disease.

R Sandyk and M A Gillman

J Neurol Neurosurg Psychiatry 1985 48: 489
doi: 10.1136/jnnp.48.5.489-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/48/5/489.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/