known that steroids, especially glucocorticoids, can modify body fat composition. Excessive epidural fat growth causing spinal stenosis has been reported during both high and low dose glucocorticoid treatment. Progesterone also causes enlargement of body fat depots and levels of this hormone rise steadily during pregnancy. It might be therefore, that the elevated progesterone levels during pregnancy stimulated the growth of the lipoma, leading to further compression of the sacral roots.

Whatever the mechanism, in some forms of occult spinal dysraphism, especially a tethered cord syndrome or lumbosacral lipoma, symptoms can start after childbirth. When the clinical picture is restricted to urinary dysfunction, especially stress incontinence, diagnosis may be delayed and the patient submitted to needless urological interventions.

J DE KEYSER, G EBINGER,* L CALLIAU†
Department of Neurology, Akademisch Ziekenhuis Vrije Universiteit Brussels, Laarbeeklaan 101, B—1090 Brussels, Belgium and the Department of Neurosurgery, Akademisch Ziekenhuis Rijksuniversiteit Gent, † Belgium.

References


Accepted 29 October 1984

Paraspinal myoclonus due to spinal root lesion

Sir: Myoclonus is a symptom produced by a wide variety of neurological diseases. Most commonly, myoclonus is generated from cerebral cortex, thalamus, brain stem or spinal cord. By contrast, localised myoclonus arising elsewhere is less familiar. As an example of unusual localised myoclonus I report a case in which segmental mid-thoracic prasapinal myoclonus occurred as the only sign of an advanced spinal nerve root lesion.

A 38-year-old man was admitted with unilateral involuntary jerking in the dorsal back muscles. In the early 1960s he had had paralytic ileus, operation for which revealed a neurosarcoma. Later, mesenteric and pelvic metastases were found. The patient's general condition had remained good until 4 months prior to admission when he experienced slight superficial pain below the left scapular region for a few weeks. The pain disappeared spontaneously. Thereafter, he was asymptomatic until he experienced jerking in the muscles of the back on the left side. The vigorous but painful jerks were present occasionally, varying from one day to another, sometimes being absent for weeks. On admission, cranial nerve and cerebellar functions were unaffected. Muscle tone and strength and deep tendon reflexes were normal and symmetric. The plantar responses were flexor. No sensory disturbances could be detected, and in particular, no thoracic segmental abnormality was seen. The only abnormal sign observed was myoclonic jerking in the paraspinal muscles at the level of the 5th thoracic segment on the left side. Extensive laboratory investigations showed normal values. No abnormality was found in the plasma radiographs of skull, chest and spine. Computed tomography (CT) of the brain and EEG were normal. Electromyography (EMG) showed a normal pattern in the muscles of the extremities and in the paravertebral muscles in the thoracic area. Unfortunately, the jerking was not present and could not be elicited at the time of the EMG investigations. Normal values were also obtained in the measurement of nerve conduction velocities and in the somatosensory evoked potentials which were examined using median, ulnar and posterior tibial nerve stimulation. Metrizamide myelography revealed a mass at the level of the 4th, thoracic vertebra. CT examination showed destruction of the left pedicle of the 4th
Failure to promote spinal cord regeneration in rats with immunosuppressive treatment

Sir: We have published several reports of minor improvement in central nervous system (CNS) regeneration in rats treated in ways that would alter their immune response. Our most successful regimen consisted of treatment with 75 mg/kg of cyclophosphamide 48 hours after spinal cord transection.1–4 While no clinical return of sensory or motor skills was noted in treated rats, electrophysiology, axoplasmic flow studies, and anatomic studies indicated that some fibres did pass through the area of complete spinal cord transection in treated rats, but not in control rats. We recently found that an earlier axoplasmic flow study indicating some recovery in long-term untreated control rats was a misinterpretation of data.5 Regeneration has been seen only in rats that have been treated in ways thought to suppress their immunologic responsiveness. While all evidence of regenerating long tracts in the spinal cord has been meager, the best results have been found in those rats treated with cyclophosphamide.

The advent of the immunosuppressant cyclosporin, which is reported to be much less toxic and much more successful in inhibiting immunologic responsiveness, led to our testing this new drug in rats with complete spinal cord transection to see if it would facilitate spinal cord long tract regeneration. We compared control rats with a complete spinal cord transection performed at T-9 cord level as described earlier6,7 with rats given one of two immunosuppressive treatments. Control rats received no specific therapy. A cyclophosphamide treated group received

References
Paraspinal myoclonus due to spinal root lesion.

K A Sotaniemi

*J Neurol Neurosurg Psychiatry* 1985 48: 722-723
doi: 10.1136/jnnp.48.7.722