The effect of isovolaemic haemodilution and intravenous glycerol on the sequelae of middle cerebral artery occlusion in the rat

A DIETIS, S EHTESHAMI, MJG HARRISON, NI PERINPANAYAGAM

From the Department of Neurological Studies, The Middlesex Hospital Medical School, London, UK

SUMMARY The therapeutic potential of isovolaemic haemodilution and osmotherapy on the sequelae of middle cerebral artery occlusion has been studied in an animal model. The territory of the middle cerebral artery that failed to fill with a carbon black intravascular marker after intracranial occlusion for 30 minutes in the anaesthetised rat was reduced by 50% by isovolaemic haemodilution to a haematocrit of 30%. An intravenous infusion of 10% glycerol prevented swelling of the ischaemic hemisphere, though it did not further improve vascular perfusion. These findings support the use of isovolaemic haemodilution and osmotherapy in the acute aftermath of stroke.

Materials and methods

Adult male Wistar rats weighing between 317 and 550 grams were anaesthetised with a single intraperitoneal injection of pentobarbitone ('Sagatal' May & Baker Ltd, 60 mgm/kg). The animals were given a tracheostomy and a femoral artery cannula was inserted for monitoring of arterial haematocrit, mean arterial blood pressure, arterial pCO₂, pO₂ and ph. A femoral venous catheter was also inserted for infusions. Haematocrit levels were measured in a Hawksley microhaematocrit centrifuge. After establishing physiological baseline values for blood pressure, pCO₂ and pO₂, the zygoma was removed and access to the right middle cerebral artery obtained through a limited craniotomy as described by Tamura et al.11 In some animals isovolaemic haemodilution was achieved by exchanging 3-3 ± 0.15 ml of blood in 0.3 ml aliquots by a 5% albumin suspension. Other animals were studied at normal haematocrit. The middle cerebral artery was then occluded by diathermy and a clip placed on the ipsilateral common carotid artery in the neck. Some animals then received either normal saline or 10% w/v glycerol in saline (3-3 ml/kg) as an intravenous infusion over 30 minutes. At the end of this period an intravenous injection of 2 ml of an iso-osmotic carbon black suspension was given immediately prior to sacrifice while the carotid clip was still in place. The brain was then removed and thick coronal slices cleared in Oil of Wintergreen (fig). The area of the middle cerebral artery territory that failed to fill with carbon particles was measured on each slice using a “digitplan” microprocessor. The coronal slices were numbered anterior (−ve) and posterior (+ve) to the slice of largest area so that comparisons could be made between different brains. The area of non-perfusion was expressed as a percentage of the area of its own hemisphere.
The effect of isovolaemic haemodilution and intravenous glycerol on the sequelae

Fig. Coronal slice of rat brain after iv. infusion of a carbon black suspension to demonstrate the area of non-filling of the vascular bed after occlusion of the middle cerebral artery.

The whole area of the hemisphere was also recorded to assess any swelling of the ischaemic hemisphere. This technique was preferred to the measurement of wet weight/dry weight difference or specific gravity measurements so that some idea of the presence of swelling could be obtained from the same specimens that were being processed for calculation of extent of vascular perfusion.

If blood pressure fell at any stage in the protocol to below 75% of the initial level, the experiment was terminated. No change in blood pressure occurred with arterial occlusion or with glycerol infusion.

Results

Isovolaemic haemodilution

One animal became hypotensive during the exchange of blood and albumin, and was excluded from further consideration. There remained five animals in whom the haematocrit was reduced to 30.4 ± 1.1%, and six animals not exchanged whose mean haematocrit was 52.3 ± 1.6% (p < 0.001, Student t test). The exchanged animals had slightly lower pO₂ but there was no significant change in pCO₂ or pH (table 1). The area of the middle cerebral territory failing to fill with carbon black was significantly smaller in the haemodiluted animals. This was true of each slice studied (table 2). In control animals at normal haematocrit the non-perfused area represented 23.05 ± 2.25% of the hemisphere when all nine coronal slices were considered together. In the haemodiluted animals the mean figure was 10.44 ± 0.9%, a reduction of over 50% (p < 0.001). Furthermore, the area of failed perfusion was restricted to the anterior part of the hemisphere only, in haemodiluted animals.

The size of the ischaemic hemisphere was greater even at this early stage after middle cerebral artery occlusion. Of 45 brain slices measured in the control animals, all showed a greater area on the ischaemic side. Similarly all but 1 of 35 slices measured in the five haemodiluted animals showed the ischaemic side to be larger.

Glycerol

In a second series of experiments, 10 animals were again haemodiluted prior to middle cerebral occlusion. Five received an intravenous infusion of normal saline, and five 10% w/v glycerol in saline during the period of occlusion. The haematocrit fell to a comparable degree in both groups. Arterial gas analysis and pH levels were also comparable (table 3). No changes occurred in arterial blood pressure.

The area of non-filling of the middle cerebral vascular bed expressed as a percentage of hemisphere area averaged over nine coronal slices was 9.98 ± 9.5% in the haemodiluted, saline infused animals, and

Table 1 Physiological variables and haematocrit in haemodiluted and control rats

<table>
<thead>
<tr>
<th></th>
<th>Control (n = 6)</th>
<th>Haemodiluted (n = 5)</th>
<th>p (Student t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haematocrit (per cent)</td>
<td>32.5 ± 2.4</td>
<td>26.9 ± 2.4</td>
<td><0.001</td>
</tr>
<tr>
<td>pCO₂ (mm Hg)</td>
<td>37.1 ± 10</td>
<td>36.4 ± 1</td>
<td>NS</td>
</tr>
<tr>
<td>pH</td>
<td>7.29 ± 1.3</td>
<td>7.18 ± 0.07</td>
<td>NS</td>
</tr>
<tr>
<td>pO₂ (mm Hg)</td>
<td>131 ± 12</td>
<td>108 ± 24</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table 2 Area of non perfusion as percentage of cross sectional area of hemisphere in coronal slices in haemodiluted and control rats

<table>
<thead>
<tr>
<th>No. of slice (see Methods)</th>
<th>Control (n = 6)</th>
<th>Haemodiluted (n = 5)</th>
<th>p (Student t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>24.3 ± 3.6</td>
<td>15.0 ± 2.0</td>
<td><0.001</td>
</tr>
<tr>
<td>-2</td>
<td>27.3 ± 3.4</td>
<td>18.4 ± 1.5</td>
<td><0.001</td>
</tr>
<tr>
<td>-3</td>
<td>32.5 ± 2.4</td>
<td>21.4 ± 3.0</td>
<td><0.001</td>
</tr>
<tr>
<td>-4</td>
<td>38 ± 2.4</td>
<td>26.9 ± 2.4</td>
<td><0.001</td>
</tr>
<tr>
<td>0</td>
<td>22.0 ± 3.1</td>
<td>10.7 ± 1.6</td>
<td><0.001</td>
</tr>
<tr>
<td>+1</td>
<td>21.6 ± 3.0</td>
<td>0</td>
<td><0.001</td>
</tr>
<tr>
<td>+2</td>
<td>17.8 ± 3.6</td>
<td>0</td>
<td><0.001</td>
</tr>
<tr>
<td>+3</td>
<td>13.0 ± 1.3</td>
<td>0</td>
<td><0.001</td>
</tr>
<tr>
<td>+4</td>
<td>10.7 ± 1.2</td>
<td>0</td>
<td><0.001</td>
</tr>
</tbody>
</table>
13·65 ± 11·8% in the haemodiluted glycerol treated group. The difference is not significant. The figures for both these groups are comparable to those of the haemodiluted group in the first part of the study.

That glycerol had affected hemisphere swelling was obvious from the fact that the ischaemic hemisphere was the larger in 17 slices from treated brains, but the non-ischaemic side was larger in 18. This contrasts with the uniform finding of a swollen ischaemic side in control animals and those only haemodiluted (Part 1) (Chi square 26, p < 0·001).

Discussion

These results show that isovolaemic haemodilution to a haematocrit of 30·4 ± 1·1% in the rat at the time of middle cerebral occlusion reduces by 50% the area of the middle cerebral artery bed that is inaccessible to an intravascular marker. This is in keeping with earlier observations such as those of Sundt,13 who noted a potentially beneficial effect of haemodilution in comparable circumstances, though the actual levels of haematocrit were not published.

Although the dependence of blood flow on haematocrit (and viscosity) appears to be physiological and a reflection of the normal regulation of oxygen delivery,14 it is possible that flow in the maximally dilated ischaemic collateral bed could be limited by rheological factors. Such a dependence on haematocrit would explain the finding that the size of infarcts is related to the prevailing haematocrit level in the case of carotid occlusion.4

Recent pilot trials suggest that isovolaemic haemodilution may reduce the mortality and morbidity of acute ischaemic stroke in man, and multicentre trials are under way.15 It was noteworthy that despite reduction in the vascular territory not reached by an intravascular marker, after haemodilution, swelling of the infarcted hemisphere was still detectable.

An intravenous infusion of glycerol during the period of ischaemia apparently reduced such early ischaemic swelling but failed to make any detectable further improvement in vascular filling, though improvement in tissue perfusion has been shown by others.7

The results of this study suggest that hyperosmolar therapy might with advantage be combined with isovolaemic haemodilution in the treatment of acute cerebral ischaemia.

We are grateful to Mr TN Gajee and Miss E Weisblatt for skilled technical assistance.

References

The effect of isovolaemic haemodilution and intravenous glycerol on the sequelae of middle cerebral artery occlusion in the rat.

A Dietis, S Ehteshami, M J Harrison and N I Perinpanayagam

J Neurol Neurosurg Psychiatry 1986 49: 428-430
doi: 10.1136/jnnp.49.4.428