Matters arising

to the lesions we documented. This means
that, as far as can be judged from CT scan
evidence, the lesion of our patients never
encroached upon the arcuate bundle. As to
the occipito-frontal bundle, it runs medially
to the corona radiata at the level of the roof
of the lateral ventricle, which it helps to
form. Thus only damage appearing in the
CT scan slices where the lateral ventricle is
no longer visible bears a relationship to
occipito-frontal interruption. In our patients
the lesion never reached this level.

<table>
<thead>
<tr>
<th>Table</th>
<th>Sodium-dependent uptake of D-[3H] aspartate in human brain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alzheimer’s disease (n = 3)</td>
</tr>
<tr>
<td>Temporal cortex</td>
<td>11.0 (8.3–14.3)</td>
</tr>
<tr>
<td>Parietal cortex</td>
<td>7.5 (4.1–11.9)</td>
</tr>
<tr>
<td>Occipital cortex</td>
<td>9.2 (5.2–11.5)</td>
</tr>
<tr>
<td>Anterior Cingulate cortex:</td>
<td></td>
</tr>
<tr>
<td>Anterior</td>
<td>9.9 (6.4–12.4)</td>
</tr>
<tr>
<td>Posterior</td>
<td>12.4 (11.7–12.9)</td>
</tr>
</tbody>
</table>

Values are means with the range in parentheses, ND—not determined. The mean age and necropsy delay of Alzheimer subjects (71 years, 1–8 hours) was similar to that of subjects with “other dementias” (71 years, 1–5 hours). Neurosurgical specimens were from patients with a mean age of 53 years.

Reference


Glutamatergic Denervation in Alzheimer’s Disease—A Cautionary Note

Sir: Sodium dependent binding of D-[3H] aspartic acid has been used1 as a tool for identifying the degenerate neurons which Neary and colleagues consider important to the dementia of Alzheimer’s disease.2 3 However, a more suitable4 marker of nerve endings of these cells in the human brain, sodium dependent uptake of D-[3H] aspartic acid into fresh tissue, has not hitherto been examined.

The brains of six cognitively impaired patients were obtained within 2 hours of death. One cerebral hemisphere was fixed for neuropathological examination and coronal sections (1 cm thick) of the other were transported to the neurochemical laboratory in an ice-cold physiological buffer. Other samples were obtained from patients undergoing surgical treatment for intracerebral tumour where the removal of apparently normal tissue was a necessary part of the procedure. The cerebral cortex from both types of sample was immediately processed to yield tissue prisms or “mini-slices”, and the sodium dependent uptake of D-[3H] aspartic acid was then determined5 with modifications for “mini-slices”. This approach has advantages6 which include minimising the possibility that inappropriate subfractions are produced when disease-affected tissue is studied7 but any influences of either other epiphenomena (for example, interaction between altered energy metabolism8 and terminal coma) or glia have not been completely excluded.

Of the patients examined post-mortem, three had Alzheimer’s disease with widespread senile plaque and neurofibrillary tangle formation (table) and three were found to have other causes of cognitive impairment (Pick’s disease, multi-system degeneration and depressive pseudodementia; “other dementias”, table). While the neurosurgical specimens and “other dementias” had comparable uptake values in equivalent areas, Alzheimer’s disease subjects had the lowest uptake values in almost all regions examined. Studies of the metabolism of previously frozen brain tissue indicate that the mode of death of the patient may be a major factor affecting energy-dependent measures such as this. However, both groups included subjects with a short (under 1 hour) and a long (3 days) terminal coma, and there appeared to be no effect of a magnitude comparable to that of Alzheimer’s disease.

It is now important to substantiate these findings in a larger series. However, glutamate release from the Alzheimer neurosurgical specimens2 is not altered9 and glutaminase immunoreactivity seems to mark all neurons which previous studies would predict use glutamate as neurotransmitter, with the exception of some supragranular pyramidal neurons.10 Neurotransmitter candidates for these cells and excitatory cortical interneurons11 are unknown but homocysteic acid has some characteristics of such a neurotransmitter.12

We are grateful to Drs B Doshi and DMA Mann for help in the collection and classification of the specimens.

AW PROCTOR*†
AM PALMER*
DM BOWEN*
E MURPHY†
D NEARY‡
*Department of Neurochemistry, Institute of Neurology, London
†Department of Psychiatry, UMDS—Guy’s Hospital, London
‡Department of Neurology, Manchester Royal Infirmary, Manchester

References

Glutamatergic denervation in Alzheimer's disease--a cautionary note.
A W Procter, A M Palmer, D M Bowen, E Murphy and D Neary

J Neurol Neurosurg Psychiatry 1987 50: 825
doi: 10.1136/jnnp.50.6.825

Updated information and services can be found at:
http://jnnp.bmj.com/content/50/6/825.citation

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/