Short report

Familial carnitine deficiency: further evidence for autosomal recessive transmission with variable expression

ELI SHAHAR,† NATAN BRAND,* YEHUDA SHAPIRA,‡ VARDA BARASH,§ ALIZA GUTMAN§

From the Pediatric Neurology Unit,* Department of Pediatrics, Chaim Sheba Medical Center, Tel-Hashomer, Pediatric Neurology Unit‡ and Department of Clinical Biochemistry,§ Hadassah Medical Center, Jerusalem, Israel, and the Division of Neurology,† The Hospital for Sick Children, Toronto, Ontario, Canada

SUMMARY Carnitine deficiency occurring in families has been rarely reported and the genetic transmission has not yet been clearly elucidated. Five members of one family showing marked heterogeneity of carnitine deficiency states are presented. In three patients, there was no correlation between measurable carnitine levels in serum and muscle and the clinical findings. The parents, who are remote relatives from an isolated village in Kurdistan (Iraq), had low muscle carnitine levels; however, they were asymptomatic. One son, with systemic carnitine deficiency causing muscle weakness and recurrent episodes of severe hepatic encephalopathy, died at 3 years of age. His brother had mild proximal muscle weakness associated with low muscle carnitine levels. He was successfully treated with L-carnitine and prednisone. A daughter is asymptomatic, but with low serum and muscle levels of carnitine. The marked heterogeneity of carnitine deficiency states within one family, where both parents had low muscle carnitine levels, suggests an autosomal recessive inheritance with variable expression.

Carnitine is a quaternary amine essential for the transport of long-chain free fatty acids (LCFFA) across the inner mitochondrial membrane where they undergo β-oxidation providing the major source of energy to the Krebs cycle and the respiratory chain.1 Most of the carnitine required daily is synthesised in the liver and is transported primarily to muscles where LCFFA are the sole source of fuel. Carnitine deficiency states were traditionally classified into either myopathic or systemic forms. The myopathic form is characterised by proximal and truncal muscle weakness and accumulation of lipid droplets within muscle fibres associated with low muscle carnitine levels.2 In systemic carnitine deficiency, carnitine levels are reduced in the liver, serum and muscle resulting in muscle weakness and recurrent episodes of severe hepatic encephalopathy commonly terminating in death.3 4 This concept of differentiation into distinct clinical myopathic and systemic forms was challenged, however, when mixed forms were reported noting the lack of correlation between plasma or muscle carnitine levels and clinical features.5-8

Familial carnitine deficiency has been rarely reported,9-11 describing marked heterogeneity of carnitine deficiency states, thus postulating an autosomal recessive mode of transmission. We have studied five members of one family who had various forms of carnitine deficiency. This provides further evidence for an autosomal recessive mode of inheritance with variable expression in familial carnitine deficiency.
Family carnitine deficiency: further evidence for autosomal recessive transmission with variable expression

Case reports

Two brothers and a sister, 6 months, 11 months and 5 years of age at diagnosis, and their parents were investigated. All the children were born at term following an uneventful pregnancy, delivery and post-natal period. Documented mental and cognitive development was normal in all three children. The parents are remote family relatives, both coming from an isolated small community in Kurdistan (Iraq) where many intra-familial marriages occurred.

Total serum carnitine levels were measured in all family members and compared with a control value of 60 ± 30 nmol/ml established in the laboratory of one of the authors (AG). Muscle biopsies were performed in all five patients studied and specimens were submitted for routine microscopy, histochemistry and electron microscopy. The muscle carnitine levels were measured in a fresh specimen taken from the biopsy and compared with a control value of 2.5 ± 1 nmol/mg wet weight. The total serum levels in carnitine in serum and muscle in relation to the respective clinical presentations are illustrated in the table.

Patient No 1: The index patient was admitted at age 11 months with a second episode of a Reye-like syndrome. Motor milestones were delayed from birth. He completely recovered from a comatose state lasting 36 hours which had occurred 6 weeks prior to this present episode. Three days prior to admission he developed low-grade fever, irritability and recurrent vomiting. He gradually lapsed into a deep coma associated with intractable generalised tonic-clonic seizures and respiratory failure accompanied by hypoglycaemia and impaired liver function tests. High doses of diltantin, phenobarbital, diazepam and paraldehyde were needed to control the intractable seizures. Examination, on admission revealed generalised muscle wasting and hepatomegaly. He was deeply comatose with fixed non-reactive pupils, generalised hypotonia with brisk deep tendon reflexes and extensor planter responses. Persistent elevation of the intracranial pressure to levels up to 40 mm Hg (normal value: up to 15 mm Hg), was managed with a full ‘brain resuscitation’ protocol including fluid restriction, hypothermia, thiopenothodal coma, dexamethasone and mannitol therapy. Serum and CSF levels of ammonia and lactic acid were abnormally elevated. The diagnosis of systemic carnitine deficiency was established by total serum and muscle carnitine values, which were as low as 8.8 nmol/ml and 0-25 nmol/mg wet weight respectively. The muscle biopsy demonstrated ‘ragged-red’ fibres, multiple fat droplets within the fibres with a predominance of type I fibres. Abnormal, deformed mitochondria were observed on electron microscopy. Treatment was initiated with massive doses of L-carnitine of 400 mg/kg which normalised his serum and muscle carnitine levels. However, he remained in a persistent vegetative state with frequent myoclonic seizures and died at age 3 years.

Patient No 2: The younger brother of the proband presented with mild muscle weakness during the first few months of life. At age 5 months he still had a mild head lag and he did not roll over. Examination revealed mild weakness of the neck muscles as well as mild proximal weakness. Serum carnitine levels were normal (39 nmol/ml). Two consecutive muscle biopsies favoured a lipid storage myopathy. Total muscle carnitine levels were found to be low in both biopsies, being 0.26 and 0.46 nmol/mg wet weight, respectively. Treatment was begun with a combination of oral L-carnitine and prednisone. His muscle power returned to normal although the muscle carnitine levels remained low. His psychomotor development and muscle power remain normal with a follow-up period of 3 years.

Patient No 3: The asymptomatic sister of patients 1 and 2 was seen at age 5 years. Physical examination revealed normal muscle power. Serum and muscle carnitine levels were found low at 25 nmol/ml and 0.79 nmol/mg wet weight, respectively. Muscle biopsy showed type I fibre predominance. She remains asymptomatic with a follow-up period of 3 years.

Patients 4 and 5: Total serum carnitine levels were found to be normal in both parents. Muscle carnitine levels were lower than normal in the mother as well as the father at 1.03 and 0.89 nmol/mg wet weight, respectively, although they were greater than the carnitine levels of their affected sons. Type I fibre predominance was found only in the mother’s muscle biopsy. Both parents are healthy with normal mentation.

Discussion

Marked heterogeneity of carnitine deficiency states, with respect to clinical presentation or laboratory findings, as documented in the family presented, has not been previously described. This family includes a male infant with systemic carnitine deficiency, his
brother with muscle carnitine deficiency, a completely
asymptomatic sister with abnormally low serum and
muscle carnitine levels, and both asymptomatic par-
ents with low muscle carnitine levels. The lack of
symptoms despite low serum and muscle levels of car-
nitine, as noted in the sister, is extremely unusual. A
few cases describing patients with low serum and
muscle carnitine levels showing only myopathic fea-
tures have been reported.5–7 On the other hand, pa-
ients with a clinical presentation of systemic carni-
tine deficiency and normal serum carnitine levels
have also been reported.8,9 The family we have present-
ed helps to demonstrate the difficulties in drawing a
clear distinction between carnitine deficiency states in-
cluding multisytem involvement, isolated muscle carni-
tine deficiency, or asymptomatic patients despite low
serum or muscle carnitine. A muscle biopsy is there-
fore recommended in all close relatives of carnitine
deficient patients, regardless of their clinical status, to
search for evidence of lipid storage myopathy.

Familial carnitine deficiency is a very rare condi-
tion and the inheritance pattern of this disorder has
not been entirely elucidated. To date, only few re-
ports of carnitine deficiency states occurring within families
have been published.9–11 Scholte et al9 presented two
sisters, one who died with systemic carnitine
deficiency while her sister had only mild muscle weak-
ness despite low serum and muscle carnitine levels.
The parents, who were asymptomatic, were found to
have normal serum and muscle carnitine levels. Muscle biopsies
were not performed. Cornelio et al4 reported three
cases from an isolated region in the Italian Alps which is
reputed to have a high rate of inbreeding. One of
the patients was a product of a consanguinous mar-
rriage, and therefore one could speculate a familial ori-
gin to the systemic carnitine deficiency in this case.
They described a second family where both parents
had decreased serum levels of carnitine and their two
children who developed a fatal "lipoic storage myopa-
thy with carnitine deficiency". These authors also
report10 two identical twins who died at age three
months from a metabolic encephalopathy reminiscent
of Reye syndrome. One of them was investigated and
found to have low carnitine levels in liver, serum and
muscle along with a lipid storage myopathy mainly in
type I fibres. Both parents, reported to be asympto-
tomatic, were thoroughly investigated including liver
and muscle biopsies. Total carnitine levels were low in
both with abnormal distribution of carnitine esters in
the plasma. Liver carnitine levels were reduced in
both, while muscle levels were normal in the mother
and probably low in the father. Muscle and liver biop-
sies in both parents, however, were morphologically
normal. Based on their experience, these authors sug-
gest an autosomal recessive mode of inheritance.

Recently, Cruse et al11 described two sisters with sys-
temic carnitine deficiency demonstrating no cor-
relation between the plasma carnitine levels and the
clinical manifestations. Free serum carnitine levels
were reduced in both patients although they were two
times higher in the asymptomatic one. The parents
had normal serum carnitine levels; muscle biopsies
were not performed. In both patients a significant
abnormality in the renal clearance of carnitine was
found; a mild abnormality was present in the mother.

The present description of a family demonstrating
marked heterogeneity of familial carnitine deficiency
states with a lack of correlation between measurable
levels of carnitine in muscle or serum further substanc-
tiates previous speculations of an autosomal recessive
mode of transmission of this disorder showing vari-
able expression. Similar to the reports of patients liv-
ing in isolated remote communities in the Italian Alps,9,10 the parents in the family we have presented
are remote relatives from an isolated Jewish village in
the mountains of Kurdistan (Iraq). Thus, the risk of
the occurrence of an inborn error of metabolism such
as carnitine deficiency is increased in such consan-
guinous relationships.

References

1 Bremer J. Carnitine—metabolism and function. Physiol
2 Angel AG, Angelini C. Carnitine deficiency of human
skeletal muscle with associated lipid storage myopa-
3 Karpati G, Carpenter S, Angel AG, et al. The syndrome
of systemic carnitine deficiency. Neurology 1975;
4 Cornelio F, DiDonato S, Feluchetti D, et al. Fatal cases
of lipid storage myopathy with carnitine deficiency. J
5 Angelini C, Govoni E, Bragaglia MM, Vergani L.
Carnitine deficiency: acute postpartum crisis. Ann
6 Carrol JE, DeVivo DC, Brook MH, et al. Carnitine
"deficiency": Lack of response to carnitine therapy.
carnitine deficiency: Morphological and metabolic
correlations in two cases. Can J Neurol Sci
8 Ware AJ, Burton WC, McGarry JD, et al. Systemic
9 Scholte HR, Meijer AEFH, Van Vijngaarda GK,
Leenders KL. Familial carnitine deficiency: A fatal
case and subclinical case in a sister. J Neurol Sci
autosomal recessive inheritance in systemic carnitine
11 Cruse RP, DiMauro S, Towfighi J, Trevisan C. Familial
systemic carnitine deficiency. Arch Neural 1984;
41:301–5.
Familial carnitine deficiency: further evidence for autosomal recessive transmission with variable expression.

E Shahar, N Brand, Y Shapira, V Barash and A Gutman

J Neurol Neurosurg Psychiatry 1988 51: 298-300
doi: 10.1136/jnnp.51.2.298

Updated information and services can be found at:
http://jnnp.bmj.com/content/51/2/298

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/