Short report

Race-gender differences in serum creatine kinase activity: a study among South Africans

R F GLEDHILL,* C A VAN DER MERWE,† M GREYLING,* M M VAN NIEKERK‡

From the Division of Neurology, Department of Internal Medicine, University of Pretoria;* the Institute of Biostatistics, Medical Research Council;† and the Department of Chemical Pathology, Institute of Pathology, University of Pretoria;‡ South Africa

SUMMARY Higher levels of total serum creatine kinase activity have been reported in black compared with white North Americans of the same sex. In a study among South Africans, we found such an interracial difference was notable only for males. The difference was heightened by physical activity. This study affirms the importance of sampling the indigenous population when developing a reference range for total creatine kinase activity.

Several reports from North America have described substantially higher levels of total serum creatine kinase (CK) activity in black adults compared with white adults of the same sex.1-6 Such race-gender differences have important implications, as the level of this enzyme is an established laboratory aid for the diagnosis and management of various skeletal muscle disorders.4,6

To develop a reference range for our hospital, we measured levels of total CK activity in healthy black South Africans of both sexes. Simultaneously, we further investigated the relationship between race, gender and CK activity by studying a comparable group of white South Africans. Considering the elevation in total CK activity that may occur during normal (that is, everyday) activity7-9 and that invariably follows strenuous recreational activity,10-19 particular attention was paid to these variables when designing the study protocol. Part of this study has been briefly reported.20

Methods

Subjects and procedures
The black male and black female subjects were members of either the nursing or administrative staff at Kalafong Hospital. The white male and white female subjects were University of Pretoria medical students or Institute of Pathology laboratory personnel. All gave informed consent. The subjects fasted overnight prior to blood sampling. At this time, information was sought as to their present state of health and what medication they were taking regularly. In addition, they were asked whether and, if so, when in the previous 7 days they had undertaken vigorous physical activity and whether they engaged in systematic recreational activity. Female subjects were asked whether they had reason to believe they were pregnant.

Blood sampling and biochemical analyses
Using gentle handling to avoid haemolysis,21 blood samples were taken from an antecubital vein with minimal stasis.22 Sampling was undertaken before 0830h. The specimens were delivered directly to the (central) laboratory and analyses were performed the same day (see ref 23). Total serum CK activity was analysed by the Centrifichem System Analyses® (Union Carbide Corporation) using Gemstar™ reagent kits (Electro-Nucleonics International Ltd). Values were estimated at 37°C.

Statistical analyses
Correlations were assessed by Spearman’s rank correlation coefficient (r). P values of <0.05 were considered significant.

Results
Fifty-four black males, 111 black females, 88 white males and 67 white females were studied. All subjects were in good health and not one was taking regularly medication known to affect total CK activity.24 None of the females believed they were pregnant. Frequency distributions of total CK activity are illustrated in the fig; for none of the groups did values conform to a normal distribution. The group mean ages and median values (with ranges) for total CK
The exercisers were further subdivided into those who had, and those who had not, undertaken vigorous physical activity within the previous 72 h. The number of subjects in each exercise subgroup, together with the 95% confidence intervals for median values and values for interquartile ranges for total CK activity, are shown in the table. The CIs were of a higher order in males compared with females of the same race and in black males compared with white males. In the case of female interracial comparisons, no distinctive pattern emerged.

Only for the black males was the correlation between age and total CK activity significant ($r = -0.434$, $p = 0.001$). The mean age of the black male non-exercisers was 35.9 (SD 12.96) years and the correlation in this subgroup was -0.514 ($p = 0.024$); for the exercisers (both subgroups combined), the corresponding values were 23.2 (SD 5.75) years and -0.146 ($p = 0.400$). The significant negative correlation for the black males as a group may therefore be explained by the confounding variable of physical activity.

Discussion

The results of this study exhibit several features that merit further consideration. Specifically, we found that levels of total CK activity were notably higher in males compared with females of the same race and in black males compared with white males; that these phenomena were intensified by physical activity; and that levels were generally higher in black females compared with white females.

Males compared with females of the same race

There is an extensive literature describing higher levels of total CK activity in men compared with women of the same race. While it is generally

Table

Mean ages and median values and ranges of total creatine kinase (CK) activity in the race-gender groups, with 95% confidence intervals (CI) for median values and values for interquartile (IQ) ranges of total CK activity in the exercise subgroups within each race-gender group

<table>
<thead>
<tr>
<th>Race-gender groups</th>
<th>Total creatine kinase activity (IU/l)</th>
<th>Exercisers</th>
<th>Npn exercisers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean age (years)</td>
<td>N</td>
<td>Median</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black males</td>
<td>27.7</td>
<td>54</td>
<td>216</td>
</tr>
<tr>
<td>Black females</td>
<td>22.0</td>
<td>111</td>
<td>97</td>
</tr>
<tr>
<td>White males</td>
<td>23.1</td>
<td>88</td>
<td>142</td>
</tr>
<tr>
<td>White females</td>
<td>21.9</td>
<td>87</td>
<td>93</td>
</tr>
</tbody>
</table>

Total creatine kinase activity 91 IU/l.
believed that the influence of oestrogens is responsible.17,21,27,29-34 It is possible that androgens35,36 may have a role as well. The influence of oestrogens has also been invoked to explain the greater elevation of total CK activity in males following physical activity.16 While not all studies have shown this disparity,19,37 in our study gender differences were clearly heightened by physical activity. This was observed for blacks and for whites, though most notably among the former.

Black males compared with white males

The differential effect of physical activity (as well as the greater gender difference between black non exercisers) was due to the comparatively higher values for black males rather than lower values for black females. In seeking to explain this finding as regards both subgroups of male exercisers, consideration must be given to the varied effects of total CK activity of training.10,13-15,18 and to the influence of the duration and intensity of recent physical activity.11,12,15 As our study was not designed to address such specific issues, the relative contributions of these factors remain unknown.

Variations in muscle mass have been proposed to account for interracial differences in total CK activity4 and such a factor has to be reckoned with to explain the higher values of the black male non exercisers. A recent study failed to substantiate this notion,6 however, and a more likely explanation could be the influence of genetic factors.1 Not only have twin pair studies shown that interindividuation variation in total CK activity is under some degree of genetic control,38 but also a consistent trend towards higher values with increasing skin pigmentation has been reported.2

The influence of genetic factors (on physical activity effects) also may offer a more rational explanation for the comparatively higher values of the black exercisers.

Black females compared with white females

The close interracial similarity of values for females most distinguishes our results from those in previous reports.1-6 Two circumstances may bear on this discrepancy. Thus, in none of the cited studies can physical activity be wholly excluded as possibly contributing to the substantially higher values among their black females. It also needs to be emphasised that our study involved a population from an entirely different part of the world.

In conclusion, we have affirmed the importance of sampling the indigenous population when developing a reference range for total CK activity.4,6,39 In addition, this study has highlighted the need to exclude systematic recreational activity, as well as recent physical activity, when interpreting an elevated value, at least with respect to young adult males.

Permission to study Kalafong Hospital staff was given by the Director of Hospital Services for the Transvaal. We thank Mr AJ Dippenaar and Mrs HJ Symington for arranging access to these persons, Mr J Breder and Mrs L Matzner for technical help and Mrs JJ Edwards for secretarial assistance. Dr G Schott provided valuable criticism of the manuscript.

References

Gledhill, Van der Merwe, Greyling, Van Niekerk

39 Meltzer HY. Interpretation of CK activity. JAMA 1974;229:1169.
Race-gender differences in serum creatine kinase activity: a study among South Africans.

R F Gledhill, C A Van der Merwe, M Greyling and M M Van Niekerk

J Neurol Neurosurg Psychiatry 1988 51: 301-304
doi: 10.1136/jnnp.51.2.301

Updated information and services can be found at:
http://jnnp.bmj.com/content/51/2/301

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/