oidal bones as well as irregular bone destruction superiorly in the vault. There was also considerable encroachment on the left hemisphere with oedema of the white matter, compression of the left lateral ventricle and displacement of the ventricles to the right. After contrast an enhancing mass was demonstrated in the area of dysplastic bone (fig). At surgery a grey gelatinous tumour was found beneath the left parietal bone compressing the cerebral cortex, which was shown histologically to be a meningothelial meningioma infiltrating bone. There were no features of a sarcoma.

The association between fibrous dysplasia and meningioma does not seem to be recognised and this may be the first report. The direct juxtaposition of the dysplastic bone and the tumour make it most likely that the link is causal. Neither previous craniectomy nor acrylic prostheses are known to be associated with meningioma and the patient had never been treated with radiotherapy. Although bone histology was not available in this case, the radiological appearances, the normal serum biochemistry and the age of onset in late childhood make fibrous dysplasia the only reasonable diagnosis. The bony changes could not be explained on the basis of the known hyperostosis which is associated with meningiomas both because many cranial bones were involved radiologically which were distant from the tumour and secondly no meningioma was present at his original craniectomy 22 years previously.

The authors thank Dr G M Stern for permission to report this case.

JONATHAN FRANKEL
FAUSTO IANOTTI
MICHAEL POWELL
FREDERICK SCHON
Department of Neurology and Neurosurgery, The Middlesex Hospital and Department of Neurology,* Atkinson Morley's Hospital, London, UK

Address for correspondence: Dr J Frankel, Department of Neurology, The Middlesex Hospital, Mortimer Street, London W1N 8AA, UK.

Matters arising

Seasonal variations in the incidence of photo-paroxysmal response

Sir: The phenomenon of seasonal variability in photosensitivity of epileptic patients, reported by Danesi1 is at variance with the findings from two other British centres2 and is not corroborated by our data from the Netherlands.

Since 1980 we have conducted a prospective study of photosensitivity and its clinical implications in 100 photosensitive patients (Kastelein-Nolst Trenité, thesis in preparation) and no such consistent seasonal variability has been found. Table 1 lists the number of newly identified photosensitive patients against the total number of new EEG referrals for EEG investigation of epilepsy per season. Apart from a slight autumnal excess in incidence of photosensitivity (p < 0·1, chi-square), there is no seasonal difference. Moreover, unlike Danesi, we quantified the degree of sensitivity by measurement of the photosensitivity range.3 From Danesi's model one might expect not only the prevalence but also the degree of photosensitivity to be greater during winter time, yet when our 100 patients are divided into two equal groups according to their photosensitivity ranges at the time of the first examination, no such seasonal effect is present (table 2).

Dr Danesi's hypothesis of increased photosensitivity during the winter season is thus not supported by the findings of three other centres. On the contrary, in our material a weak seasonal effect appears to result from patients presenting with visually-induced seizures during the summer who then attend for EEG investigation in the autumn. This issue is not of purely academic interest as Dr Danesi's hypothesis leads to the prediction that chronic exposure to high levels of ambient lighting may have adverse effects on people with photosensitive epilepsy.

DGA KASTELEIJN-NOLST TRENIŢE
CD BINNIE
J OOSTING
W VAN EMDE BOAS
Achterweg 5, Heemstede, The Netherlands

Table 1 Relation between the incidence of newly identified photosensitive patients and the number of new EEG referrals per season

<table>
<thead>
<tr>
<th>Season</th>
<th>Newly identified photosensitive patients</th>
<th>Total number of new EEG referrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring (Mar, Apr, May)</td>
<td>20</td>
<td>586</td>
</tr>
<tr>
<td>Summer (Jun, Jul, Aug)</td>
<td>20</td>
<td>492</td>
</tr>
<tr>
<td>Autumn (Sep, Oct, Nov)</td>
<td>37</td>
<td>609</td>
</tr>
<tr>
<td>Winter (Dec, Jan, Feb)</td>
<td>23</td>
<td>655</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>2342</td>
</tr>
</tbody>
</table>

Table 2 Relation between degree of photosensitivity and season in 100 photosensitive patients

<table>
<thead>
<tr>
<th>Season</th>
<th>Photosensitivity range</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>+</td>
<td>10</td>
</tr>
<tr>
<td>Summer</td>
<td>+ +</td>
<td>10</td>
</tr>
<tr>
<td>Autumn</td>
<td>+ +</td>
<td>20</td>
</tr>
<tr>
<td>Winter</td>
<td>+ +</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

References


Accepted 12 September 1988.
Seasonal variations in the incidence of photoparoxysmal response.
D G Trenité, C D Binnie, J Oosting and W Van Emde Boas

J Neurol Neurosurg Psychiatry 1989 52: 547-548
doi: 10.1136/jnnp.52.4.547

Updated information and services can be found at:
http://jnnp.bmj.com/content/52/4/547.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/