Walsh and O'Doherty\(^3\) state that there should be (1) a history of typical migraine, (2) ophthalmoplegia involving one or more nerves on one side or alternating sides, and (3) exclusion of other causes by arteriography, surgery or necropsy.

The condition is uncommon, affecting approximately 1 in 600 migraine sufferers.\(^4\) Patients are usually under 30 years of age, and have longstanding migraine. Following a headache, which is almost always periorbital, ptosis and oculomotor paralysis develop. Pupillary paralysis is almost invariable.\(^5\) Recovery occurs over days to months but recurrences may result in permanent deficit. Abducens nerve is involved alone in approximately 10% of cases,\(^6\) and occasionally oculomotor palsy is accompanied by trochlear,\(^7\) trigeminal,\(^8\) facial,\(^9\) or hypoglossal\(^10\) nerve involvement.

Ocular paralysis usually seems to result from a peripheral lesion, but the pathophysiology has been debated. Possible mechanisms include direct pressure on ocular motor nerves\(^1\) or occlusion of the small vessels supplying them\(^1\) due to carotid artery oedema. Angiographic narrowing of the ipsilateral intracavernous carotid has been demonstrated in this disorder.\(^3\)

Ophthalmoplegic migraine involving episodic paralysis of convergence\(^12\) or convergence and upgaze\(^13\) has rarely been reported. These instances suggest that ocular paralysis occasionally results from brainstem involvement.

The current case fulfils established criteria for diagnosis of ophthalmoplegic migraine. There was no definite evidence of other diseases which cause ophthalmoplegia and the minor CSF protein abnormalities were non-specific. In particular there were no other features suggesting multiple sclerosis or Miller-Fisher syndrome.

Of specific interest was the bilateral involvement. While there have been isolated reports\(^1\) of ocular paralysis alternating sides in successive migraine attacks, bilateral involvement in a single episode has not, to our knowledge, been reported. Although no lesion was demonstrated, central pathology was considered unlikely as such a lesion would have to involve both midbrain and pons, and other clinical evidence of this was lacking. In addition, both levator palpebrae superioris muscles are believed to be innervated by a single midline nucleus and involvement of this would produce bilateral ptosis.\(^14\) Finally, the recovery of eye movements proceeded asymmetrically. We thus suspect ophthalmoplegia resulted from bilateral peripheral lesions, possibly within the cavernous sinuses.

References

1 Saundby R. A case of megrin, with paralysis of the third nerve. Lancet 1882;ii:345–6.

DO HUTCHINSON
I MACG DONALDSON*
Department of Neurology,
Christchurch Hospital and
Department of Medicine,
Christchurch School of Medicine,
Christchurch, New Zealand

*To whom correspondence should be addressed.
or hydrophobia. A postmortem study of rabies viral antigen distribution was performed by immunohistochemical techniques.

A 15 year old Thai female was well until 7 days previously, when she experienced abdominal pain associated with watery diarrhoea and vomiting. Abdominal symptoms soon disappeared and diarrhoea subsided after 48 hours. Her mother then began to notice that she developed occasional episodes of unresponsiveness and blank stare with eyes rolling upward during which she was unable to perform or to continue tasks for several seconds. The episodes subsided spontaneously and recurring many times during the day. She had no memory of these attacks. Within four days prior to admission, these symptoms recurred more frequently with more prolonged episodes. Persistent tremulousness of both hands and slurred speech were observed. She was alert and coherent during symptom free periods. There was no improvement after ingestion of food or sugar. Two days before entry, she was seen by a physician and received diazepam intramuscularly. Her symptoms of episodic blank spells improved for about one hour. One day before admission, she was noted to have inspiratory spasms accompanied by generalised paresis and weakness of all limbs. On the day of admission, she was continent of urine. Walking was still possible with support. She was able to drink and eat without difficulty. When admitted to Chulalongkorn University Hospital she was fully conscious. Her temperature was 38.2°C, her blood pressure was 120/70 mm Hg, and the pulse rate was 110 beats per minute. Respirations were irregular and characterised by inspiratory spasms. No cyanosis, anaemia, or jaundice was observed. Menta tion was normal, but was interrupted by brief episodes of blank spells lasting several seconds. The patient had bilateral facial weakness of lower motor neuron type with dysarthric speech. The gag reflex was present. Minimal dysphagia at attempts to drink water was noted. There was no aero phobia, hydrophobia or hypersalivation. Other cranial nerves were intact. Motor power examination revealed bilateral and symmetrical weakness of both upper and lower limbs. This was most marked at the proximal group with 3/5 MRC grading as compared with 4/5 of the distal group. Tremor of both hands was observed on postural maintenance. Pinprick and vibratory sensations were preserved. Deep tendon reflexes were all absent. Plantar responses were bilaterally flexor. An indwelling catheter was inserted.

The urine was normal. The haematocrit was 0.4 (40%); the white-cell count was 9.6 x 10⁹/L (9.6 x 10³/mm³) with 69% neutrophils, 31% lymphocytes. Platelets were adequate and the erythrocyte sedimentation rate was 20mm per hour. Serum urea nitrogen, creatinine as well as liver function tests were normal. The sodium level was 131 mmol, the potassium 3.6 mmol, the chloride 92 mmol, and the carbon dioxide 15.5 mmol/L. The EEG showed a background activity of alpha range and periodic spike potentials at the temporal areas. Chest radiographs and an electrocardiogram were normal. A lumbar puncture showed clear liquid. The initial pressure was 90 mm H₂O, there were 5 lymphocytes. Glucose level was 4.2 mmol/l (76 mg/dl), and proteins were 1-4 g/l (140 mg/dl). Results of a Gram's stain and India ink preparation and cultures were negative. On hospital day 2, alternating intervals of confusion and drowsiness developed. During the confusional state, she appeared extremely agitated and disoriented. This happened without any warning, lasted only for minutes, and was accompanied by fixed and dilated pupils and generalised paresis. Between these episodes of wild agitation, the patient became drowsy but was arousable. Upward tonic deviation of eyes occurred with increased frequency. Spontaneous inspiratory spasms, noted since the day of admission now occurred every few minutes and lasted about 5 seconds each. Bilateral facial weakness was complete and the gag reflex was totally absent. Marked hypersalivation was noted. Myoedema could be demonstrated by percussion at the chest, deltoid and thigh regions with a tendon hammer. She barely moved her legs and arms. Sensory function was still preserved. By the end of this day, spontaneous respiration was inadequate requiring ventilatory support. Further questioning of her parents revealed a history of a dog bite on her fingers 3 months previously. She received appropriate wound care but no rabies post exposure prophylaxis. The anti-rabies antibody titre by rapid fluorescent focus inhibition test (RFFIT) of the serum was 1-4 IU/L. The spinal fluid revealed no detectable rabies antibody.

Irritability was gradually replaced by depression of consciousness on day 3. She opened her eyes for 10 seconds after being aroused. Breathing was totally dependent on the ventilator. Intermittent spasms of accessory respiratory muscles of the neck and of the diaphragm were still present. During the next 6 days, her condition deteriorated to the point where she was completely unresponsive with flaccid quadriplegia. High fever persisted in the range of 38 to 40.5°C and was partially relieved by the use of acetaminophen. Violent convulsive seizures appeared on hospital day 5 and were partly controlled by intravenous phenytoin and diazepam. Oculocephalic reflex and pupillary light reaction were intact. Intermittent contraction of sternocleidomastoids continued and percussion myoedema was still evident. On hospital day 6, sinus tachycardia followed by supraventricular tachycardia developed and severe hypotension supervened. She died on the 9th hospital day.

Rabies antigen distribution was studied by the avidin-biotin immunohistochemical technique using equine rabies antibody (Becton Dickinson and Co., Cockeysville, MD). It was performed on formalin-fixed tissue from the brain, brainstem and cerebellum, spinal cord. Controls included nonimmune horse serum as a primary antibody and normal brain. These studies demonstrated the presence of rabies viral antigen in all examined areas. Diffuse distribution did not only occur in neurons, but also in cells consistent in appearance with astrocytes and oligodendrocytes. The degree of involvement of these glial cells was roughly similar to that of neurons. Inflammation was scant in relation to the amount of viral antigen, and was not limited to the spinal cord. Satellitosis, neuronal degeneration and glial nodules were rarely observed.

Paralytic rabies is difficult to diagnose because of its presentation which resembles GBS. This was tragically demonstrated in several conetal transplant cases. The major cardinal signs of encephalitic rabies: aero phobia and hydrophobia, alternating intervals of full comprehension, agitation, confusion, and signs of autonomic dysfunction such as hypersalivation, usually appear late or not at all in paralytic rabies. The most striking clinical difference between encephalitic and paralytic rabies is the relative sparing of consciousness in the latter group. Quadriplegia with predominant involvement of proximal muscles, fever, loss of deep tendon reflexes and urinary incontinence are universal findings in patients with paralytic rabies. Sensory functions are intact. However, presentation as an ascending myelitis with sensory loss to the thoracic level has been observed. The helpful signs of paralytic rabies during the early phase are percussion myoedema and piloerection. The presence of pure motor weakness, fluctuating consciousness and urinary incontinence help to differentiating paralytic rabies from sporadic as well as post-rabies vaccination induced GBS. Woe comas supervene, both forms of rabies become indistinguishable. However, contraction of the sterno-
Matters arising

Peripheral neuropathy complicating pancreatitis

We were interested in the observations of Gross et al.1 In 1970, we reported a case of a 30 year old sportsman who presented with acute pancreatitis, which was treated by surgery. Immediately after the operation, the patient developed encephalopathy characterised by a confusional state. Within a few days, a severe sensorimotor polyneuritis had led to quadriplegia. Nerve biopsy demonstrated a very severe axonopathy (reported at the VI Congrès International de Neuropathologie, 1970). The neuropathy disappeared completely over the next few months, followed by complete remission of the encephalopathy.

Although all reported cases have had acute pancreatitis, there are some notable differences between our case and that reported by Gross et al. The neuropathy in our patient appeared within a few days of the onset of the pancreatitis, although in other cases, the first signs of neuropathy were only observed some weeks after the pancreatitis.

Our patient was not diabetic, and was not taking metronidazole or receiving parenteral nutrition. This would tend to rule out an aetiology involving significant vitamin deficiency. These conditions of onset also rule out the so-called "critically ill polyn"europathy".1 In addition, it is noteworthy that the acute pancreatitis in our patient was accompanied by involvement of both central (transient encephalopathy) and peripheral nervous systems. We feel that a peripheral neuropathy may, in some circumstances, result from an acute pancreatic lesion. However, further cases will need to be identified before a causal link can be established.

References
Seizures as the initial manifestation of paralytic rabies.

T Hemachudha, S Tirawatnpong and K Phanthumchinda

J Neurol Neurosurg Psychiatry 1989 52: 808-810
doi: 10.1136/jnnp.52.6.808

Updated information and services can be found at: http://jnnp.bmj.com/content/52/6/808.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/