Cyclosporin A in the treatment of chronic demyelinating polyradiculoneuropathy

S J Hodgkinson, J D Pollard, J G McLeod

Abstract
Eight patients with chronic inflammatory demyelinating polyneuropathy, five of whom had an associated paraproteinaemia, were treated with cyclosporin in a pilot, uncontrolled study for periods up to three and a half years after failing to respond adequately to corticosteroid and azathioprine therapy and plasmapheresis. Three patients had an excellent response, two with complete remission. In other cases it was possible to reduce the corticosteroid therapy and frequency of plasmapheresis. There were no serious complications of the treatment.

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a disease of the peripheral nerves with a relapsing and remitting, or progressive course. It is thought to be an autoimmune disorder, but it is unclear to what extent humoral and cellular immune factors are involved in the mediation of nerve damage. However, T cells and macrophages infiltrate the nerve and there is increased expression of class II major histocompatibility complex (MHC) molecules in nerve tissue that suggests gamma interferon or other lymphoid cytokines are released by these infiltrating cells. Some cases of chronic demyelinating neuropathy, with identical clinical and pathological features to CIDP have an associated benign monoclonal gammopathy (chronic paraproteinaemic demyelinating neuropathy).

Both prednisone and plasmapheresis have improved the clinical course of many patients with chronic demyelinating polyneuropathy, with and without paraproteinaemia. There are some patients who fail to respond to these forms of therapy. Cytotoxic agents such as azathioprine and cyclophosphamide have been used, but with limited success and some toxicity. Total lymphoid irradiation has also been tried with only partial success. Thus there remains a need for alternative therapy for some patients with this condition. Cyclosporin A (CsA), a fungal metabolite, has a widespread clinical use both in transplantation and in autoimmune diseases. In this study we report the results of an uncontrolled pilot study of CsA in the treatment of chronic demyelinating polyneuropathy in eight patients, five of whom had an associated paraprotein, who had failed to respond to treatment with corticosteroids, immunosuppression and plasmaapheresis.

Methods

Patient selection
All patients had received a clinical and laboratory evaluation for peripheral neuropathy, including electrophysiological studies and sural nerve biopsy. The diagnosis of CIDP was made according to accepted criteria; we included in the study five patients who also had a benign paraproteinaemia. All eight patients had received adequate treatment with prednisone and plasmapheresis, and five also had been given azathioprine and one cyclophosphamide. Before starting CsA, each patient had a full neurological examination and the following laboratory investigations: full blood count, erythrocyte sedimentation rate, serum electrolytes, liver function tests, serum creatinine, and creatinine clearance.

Clinical assessment

After starting CsA, patients were seen weekly for the first month and then at least monthly intervals for the first six months. They were examined neurologically and their degree of disability was scored. Serum creatinine, serum electrolytes, full blood count, liver function tests, CsA whole blood levels, and blood pressure were monitored. If the serum creatinine rose during the period of treatment creatinine clearance was performed; if the serum creatinine levels did not rise the creatinine clearance was repeated at the end of one month and again after three to six months. Nerve conduction studies were performed on all patients before starting CsA and for most patients at six to 12 month intervals thereafter.

The experimental nature of the treatment and the potential toxicity of CsA were explained in detail to all the patients before they gave their informed consent. The clinical trial was approved by the Medical Ethics Committee of the Royal Prince Alfred Hospital.

Dosage

CsA was started at 10 mg/kg/day in most patients. After one month the dosage was reduced to 8 mg/kg/day and by three months to 5 mg/kg/day. If the patient remained stable or had improved it was reduced further at six months. If a relapse occurred the dose was increased to the pre-relapse level. The whole blood CsA level was monitored using radioimmuno assay (Sandoz, Basle CH) on two occasions when the level was higher that 800 ng/ml the dose was reduced. The dose of prednisone and the frequency of plasmapheresis were left unchanged until the patient
Results

The results of treatment of eight patients with CsA are summarised in the table. Their ages ranged from 25 to 71 years. Five had a relapsing course and three had a progressive course. Five patients had a paraproteinemia. All patients had received an adequate course of treatment with prednisone and plasmapheresis before starting CsA. In addition, five patients had been treated with azathioprine and one with cyclophosphamide. Duration of CsA therapy ranged from six months to four years. There were no serious side effects in any patient; creatinine clearance fell below the normal range in two patients but returned to normal after cessation of treatment. Minor side effects of nausea, oedema and hirsutism were noted in some patients. Three patients (cases 1, 2 and 8) went into complete remission following CsA therapy, and no relapses have occurred in the two patients (cases 1, 2) whose treatment finished over one year ago. The course of the illness in these three patients is illustrated in the figure. Previously, case 3 required maintenance plasmapheresis every two to three weeks but this treatment was not necessary for a period of one year during or after CsA therapy. The other four patients were stabilised on lower doses of corticosteroid and less frequent plasma exchanges.

Case reports

Case 1

In June 1979 this man aged 43 years developed symptoms and signs of a sensorimotor neuropathy with gradual onset and progression over E.
a period of one year. A clinical diagnosis of chronic demyelinating neuropathy was confirmed by electrophysiological studies and sural nerve biopsy. An IgGκ paraprotein was detected in the serum. There was an initial response to prednisone, but relapses occurred that failed to respond to treatment with corticosteroid and azathioprine therapy and he became quadriplegic. Following plasmapheresis he made a good recovery and was able to walk without assistance. Regular three weekly plasma exchanges and prednisone, 5 mg on alternate days, was necessary to prevent relapse. In June 1984 CsA was started at a dose of 10 mg/kg/day and gradually reduced to a maintenance dose of 3-4 mg/kg/day. The interval between plasma exchanges was increased but on stopping CsA for one month in January 1987 a relapse occurred; after a single plasma exchange and restarting CsA 2-5 mg/kg/day and prednisone 5 mg on alternate days he became asymptomatic. From June to December 1987 the dose of CsA was gradually reduced and finally stopped. He has remained symptom free without any treatment for 18 months. In this case treatment with CsA has been associated with complete remission of relapsing demyelinating neuropathy. No significant improvement occurred during the first six months of the three and a half years course of treatment. The paraproteinemia has persisted.

Case 2
In May 1983 this man aged 35 years developed diplopia; there was initial spontaneous improvement but a relapse occurred in July 1983 associated with ataxia and areflexia. In August 1983, following a viral infection, he developed a severe symmetrical sensorimotor neuropathy with ophthalmo-plegia, facial diplegia and an inability to walk. Nerve conduction studies revealed gross slowing of motor conduction with conduction block and the diagnosis of CIDP was confirmed by sural nerve biopsy. Improvement followed treatment with prednisone, azathioprine and plasmapheresis but relapses occurred in October 1984 and February 1985. In spite of treatment with prednisone 50 mg/day, azathioprine 150 mg/day, and weekly plasmapheresis he remained weak. Treatment with CsA was started initially at 8 mg/kg/day reducing gradually to a maintenance dose of 3 mg/kg/day. Azathioprine was stopped and prednisone gradually withdrawn. CsA was stopped in December 1987. In February 1988 his condition was stable; he had only mild disability and had not required plasmapheresis nor experienced relapses for three years.

This patient, who had had frequent relapses of CIDP and was dependent on corticosteroid and immunosuppressive therapy and plasmapheresis, improved after treatment with CsA and this was continued for two and a half years. He has remained stable without treatment for one year.

Case 8
Following a viral illness in July 1986 this 41 year old woman developed a symmetrical sensorimotor neuropathy which stabilised after progressing for about two weeks. Relapses occurred in February and April 1987 and she was treated with prednisone 40 mg a day with resulting improvement. There was a further relapse in October 1987 when plasmapheresis was started. She was unable to tolerate azathioprine. A diagnosis of CIDP was confirmed by electrophysiological studies and sural nerve biopsy. Although she initially improved with plasma exchange, relapses in January, February and March 1988 necessitated further intensive courses of plasmapheresis. By March 1988 she was tetraparetic and unable to walk. Some improvement followed an intensive course of plasmapheresis but maintenance therapy with exchanges two to three times weekly was necessary. Despite this treatment she required walking aids. Weakness was exacerbated premenstrually. In June 1988 treatment with CsA (8 mg/kg/day) was started together with prednisone 40 mg/day. CsA dosage was then reduced to 6 mg/kg/day. Since introduction of CsA there have been no further relapses and muscle power has improved considerably. She is able to walk without assistance. Prednisone has been reduced to 15 mg daily and the frequency of plasma exchanges has increased to two weekly intervals.

This patient with a relapse of CIDP that had failed to respond to intensive treatment with corticosteroids and plasma exchange improved considerably after starting CsA. No further relapses have occurred during the six month period of treatment.

Discussion
Three patients had CIDP and five others had a chronic demyelinating neuropathy with similar clinical and pathological features, but an associated benign paraproteinemia. In each case there was a severe disability that had not responded to treatment with corticosteroids, azathioprine and plasmapheresis. They were all having maintenance plasmapheresis at the time of starting CsA therapy. In all cases some benefit was derived from CsA; three patients (cases 1, 2 and 8) had an excellent response and two of these (cases 1 and 2) went into complete remission. Cases 1 and 2 were treated for periods of three and a half and two and a half years respectively and have remained in remission for more than one year since therapy has stopped. In most cases it was possible to reduce the corticosteroid dose or stop the drug altogether, and to reduce the frequency of plasmapheresis or discontinue it entirely. In two cases (cases 1 and 5) there had been a recurrence of symptoms when the CsA dosage was reduced within the first six months of treatment, an observation that supports the therapeutic value of the CsA treatment. There were no significant changes in the nerve conduction studies in any of the patients over the observation periods.

There were no serious side effects in any patient and none had persistent impairment of renal function.

CsA is thought to act partly as an immunosuppressive agent by inhibiting lymphokine release (including gamma interferon and interleukin 2) and target cell responsiveness to
lymphokine, rather than by affecting cytotoxic killing mechanisms.\(^ {14, 15} \) Gamma interferon is a potent inducer of MHC expression and macrophage activation.\(^ {16} \) The pathological features of CIDP suggest a delayed hypersensitivity response in which nerve damage is affected by the recruitment and activation of macrophages,\(^ {17} \) processes that are mediated by lymphokines (including gamma interferon) released by CD4 cells.\(^ {18} \) Such responses are initiated by the presentation of antigen (by macrophage or Schwann cell) to CD4 cells in the context of Class II MHC molecules. It is also recognised that quantitative variation is the expression of MHC products, particularly MHC-Class II, is a major regulator of immune responses.\(^ {19} \) CsA may therefore exert its effect in CIDP through its action on lymphokine release thereby reducing MHC molecule expression and effector cell recruitment and activation.

There have been several previous reports of the use of CsA. Gross and Thomas\(^ {5} \) reported six cases of CIDP treated with plasmapheresis. Their cases 2 and 3 were also given CsA following plasma exchange; case 2 ceased to progress or relapse after a four week course of CsA but case 3, who had been given 17.5 mg/kg/day of CsA, had progressive deterioration following this therapy and the drug was discontinued. Kolkin et al\(^ {20} \) reported one patient with severe CIDP who had been treated with 7.5 mg/kg/day of CsA for two years. After two years the blood pressure rose precipitously and she developed terminal renal failure. However, during the period of time that she was receiving CsA her neuropathy improved considerably. It is now apparent that CsA almost always causes some renal toxicity which, to a certain extent, is dose related.\(^ {21} \) In animal experiments, King et al\(^ {17} \) have reported that experimental allergic neuritis was suppressed by CsA.

In our cases every effort was made to ensure that the patients were maintained on the smallest possible dose of CsA, in some cases as low as 2–3 mg/kg/day. No patient had a lasting rise in creatinine clearance. Renal biopsy of patients given CsA for uveitis\(^ {22} \) have shown that some patients have interstitial fibrosis and sclerosis, even when their creatinine is normal and it is possible that some of our patients may have suffered renal damage that was not clinically evident.

It is interesting that four of our cases had monoclonal paraprotein bands (2 IgGx, 2 IgMz). The classification of these cases of chronic demyelinating neuropathy is uncertain, and some researchers consider the presence of a paraprotein band excludes the diagnosis of CIDP.\(^ {23, 24} \) In all our cases the clinical and electrophysiological features were consistent with the diagnosis of CIDP, and the sural nerve biopsy showed macrophage-mediated demyelination and an active inflammatory cell infiltrate. Moreover, no immunoglobulin binding to nerve fibres was demonstrated by appropriate immunofluorescent techniques and no widening of myelin lamellae was seen by electronmicroscopy. The paraproteinaemia persisted, despite clinical improvement during treatment with CsA and other immunosuppressive agents.

As with other drugs which could be or have been used in chronic demyelinating neuropathies may have serious side effects, we believe that CsA may be a useful adjunct to therapy in patients who have been difficult to manage with conventional therapies of prednisone, plasmapheresis and azathioprine provided that renal function is carefully monitored and the possible complications of treatment are carefully considered in relation to the natural history of the disease.\(^ {1} \) The favourable results of this open pilot study suggest that a double blind controlled trial of CsA in the treatment of chronic demyelinating neuropathies is warranted.

Cyclosporin A in the treatment of chronic demyelinating polyradiculoneuropathy.

S J Hodgkinson, J D Pollard and J G McLeod

J Neural Neurosurg Psychiatry 1990 53: 327-330
doi: 10.1136/jnnp.53.4.327

Updated information and services can be found at:
http://jnnp.bmj.com/content/53/4/327

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/