LETTERS TO THE EDITOR

Recurrent spontaneous accessory neuropathy

Isolated spinal accessory nerve palsy of obscure or spontaneous origin is an uncommon but well recognised entity.1 We describe the first reported instance of recurrent spontaneous accessory palsy.

At the age of 26 the patient developed an aching discomfort in the right shoulder and neck. This resolved after a few days but after several weeks he became aware of weakness of shoulder elevation. Examination revealed wasting and weakness confined to the right trapezius muscle. Nerve conduction studies of the accessory nerve, recorded in the trapezius, revealed latencies of 4.3 ms on the right and 2.9 ms on the left (normal < 3.2 ms). Electromyography showed large motor unit potentials and reduced recruitment in the right trapezius only. After four to five months the condition improved and the size and strength of the right shoulder returned to normal.

He remained well and continued to work as a policeman until he was 31, when he again developed an ache in the right shoulder after exercising with five-pound dumb-bells. The ache persisted for two to three weeks but was never severe and did not interfere with his sleep. Naproxen provided some relief. About three weeks after the onset of pain, the patient began to notice weakness of his right shoulder and weakness of shoulder elevation. Two weeks later the pain had entirely resolved but he was now aware of the right shoulder hanging lower than the left. He had no sensation or motor power loss other than in the shoulder. The other limbs and spinal reflex function remained normal.

Examination revealed a fit man with marked wasting of the right trapezius muscle and moderate weakness of shoulder elevation. There was right scapular winging of the trapezius type, which was present with the arm at rest and accentuated by lateral elevation of the arm. The right sternomastoid muscle was normal. No wasting or weakness was observed in the right shoulder girdle muscles and the remaining cranial nerves and other limbs were normal. General examination was normal and there was no sign of injury or abnormality on the lateral side of the neck.

Cervical radiographs and myelography of the foramen magnum were normal. CT scan of the neck and skull base revealed no abnormality. The cerebrospinal fluid (CSF) was clear and colourless, with four lymphocytes and a protein of 0.34 g/l. Serum glucose, full blood count, sedimentation rate, C-reactive protein, antinuclear factor, and routine biochemistry were normal.

Nerve conduction studies of the accessory nerve, recording trapezius, revealed a considerable decreased amplitude of the compound muscle action potential on the right, but the distal latencies were similar and normal on both sides (right = 3.2 ms, left = 3.1 ms). Electromyography revealed fibrillating potentials and large motor unit potentials with reduced recruitment in the right trapezius, and normal findings in the serratus anterior, infraspinatus, deltoid, biceps, brachioradialis and extensor digitorum communis muscles.

Our patient experienced two similar episodes, separated by eight years, of shoulder ache followed by right trapezius weakness and wasting. On both occasions clinical and electromyographic examination found no abnormality except in the right trapezius, implying the presence of a lesion affecting the accessory nerve distal to the innervation of the sternomastoid. He appeared to make a complete recovery after the first episode, only to suffer a recurrence eight years later. Investigation has not shown an underlying cause and we therefore believe he is the first reported instance of a recurrent, non-hereditary, idiopathic accessory nerve palsy.2

Due to its complicated course, the accessory nerve may be damaged by a wide range of processes affecting the cervical spinal cord, right cervical spinal canal, vertebral foramen and skull base, carotid sheath, or posterior triangle of the neck.3 The nerve is particularly vulnerable as it crosses the posterior triangle, where injury occurs most often following radical neck dissection or biopsy, resulting in weakness and wasting of the trapezius.

Spillane described three patients in 1949 who had clinical evidence of isolated accessory neuropathies, the cause of which was obscure.4 To make a complete recovery after the second episode coincided with light exercise with weights, these were small (5 pounds) and seem unlikely to have produced a stretch injury of the accessory nerve.5

Pesticide toxicity and motor neuron disease

Pyrethrins are neurotoxins that kill insects by paralysis—"knock down". This is thought to be secondary to an effect on sodium channels in motor neurons. Mammals are spared from this effect as, unlike insects, they can metabolise pyrethrin in the hepatic microsomal system to non toxic compounds.6 We previously reported a case simulating motor neuron disease (MND) closely associated with over-exposure to a pyrethrin and chlordane based insecticide.7 The chlordane component is metabolised to various compounds (including oxychlordane and epoxychlordane) via the cytochrome P450 enzyme system.8,9 However, evidence that MND patients have a defect in the hepatic extraction of pesticides is sparse.10 Metabolite B under- goes oxidation and hydroxylation to yield mainly C and D, with other compounds. Conjugates of minor metabolites with glycine,11 glutamic acid12 and taurine13 have been noted. However, the elimination of metabolites C and D in the rat is by sulphate conjugation14 which is the major metabolic pathway for permethrin.

This is of interest since we recently reported15 that MND patients have a defect in their ability to convert cysteine into inorganic sulphate and also show a poor capacity to form the sulphate conjugate of paracetamol. In the light of these observations, the 4'-Hydroxy-3-phenoxyl benzyl alcohol (meta- bollite C) and/or 4'-Hydroxy-3-phenoxyl benzozic acid (metabolite D) may be responsible for the neurotoxicity that resulted in our patient suffering from his MND-type illness. Some environmental chemicals generally

3 Petereia JE, Trojaborg W. Conduction studies along the accessory nerve and follow-up of patients with accessory palsy. J Neurol Neurosurg Psychiatry 1984;47:630-6.
Values are expressed as the mean (1 SEM) for data obtained using seven animals.

*p < 0.01 compared to vehicle treatment, Dunnet's multiple comparison test.
Pesticide toxicity and motor neuron disease.

G B Steventon, R H Waring and A C Williams

J Neurol Neurosurg Psychiatry 1990 53: 621-622
doi: 10.1136/jnnp.53.7.621-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/53/7/621.2.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/