Sphenoideal electrodes in localising temporal epileptic focus, in association with CT, MRI and SPECT

We read with interest the article by Duncan et al.1 MRI is certainly superior to CT, and SPECT is superior to MRI in detecting lateralising lesions in temporal lobe epilepsy.2 Interictal studies in temporal lobe epilepsy using both PET and SPECT show usually focal temporal hypofusion as the most common abnormality.3 The danger in localising epileptic focus by PET or SPECT lies in the fact that localisation is carried out during the interictal period and not during the ictal period. The major interest of EEG is to record the electroclinical epileptic fit, and to localise exactly the active epileptic focus that may be removed at surgery.

The correlation between lateralisation based on single surface EEG and that based on hypoperfusion seen on PET or SPECT, improves with multiple EEG recordings.3

We would like to emphasise the usefulness of sphenoideal electrodes which, even in an extracranial setting, are capable of recording all the spikes coming from the internal temporal lobe,4 and differentiate from spikes coming from the frontal lobe.5

There is not always a strong correlation between the epileptic focus that gives clinical seizures, and the lesion observed by neuroimaging.6 Comparing the electrophysiological testing can be used to observe the true localisation of the epileptic focus during an electroclinical fit. Sphenoideal electrodes and EEG are therefore likely to remain the main lateralising investigation in most cases of temporal lobe epilepsy, and results of CT, MRI, SPECT and PET should be correlated with electrophysiological data, to improve selection of patients who can benefit from temporal lobectomy.

LUCIA SEPTIEN
Department of Psychiatry and Mental Health, NAMC, Mexico City
MAURICE S. peterson, MD
Department of Neurology, General Hospital, Dijon, France


Duncan et al reply: We thank Drs Sepo and Giroud for their comments. We do, of course, agree entirely with this point that is, the usefulness of sphenoideal electrodes and other EEG techniques in localising epileptic foci. The main point of our paper was the correlation between different imaging modalities, not the correlation between imaging modalities and electrophysiological localisation. Drs Sepo and Giroud state that the danger of localising with PET or SPECT lies in the fact that these investigations are carried out interictally. In this, the authors (we infer) regard interictal SPECT as giving information analogous to that given by interictal EEG spikes. However, as spikes are picked out, the correlation between the two is often not good. Our experience suggests that simple unilateral temporal hypoperfusion is indeed a reliable localising finding. We would point out, however, that we find this in only around 30% of our overall series of patients with complex partial seizures. A further 30% have other findings (such as more extensive hypoperfusion, foci hyperperfusion or combinations of these findings) during hypoperfusion, the reliability of which we are less sure of. The remaining patients have normal regional cerebral blood flow (rCBF). Series which report localising abnormalities in higher proportions of patients do tend to have some patients who localise falsely using SPECT. Hence we feel strongly that localising reliability depends crucially on conservative reporting of images.

SPECT can of course be performed immediately postictically, or even during a seizure, as we are increasingly succeeding in doing. Initial data (our own and from elsewhere) suggest that this provides localising information in a higher proportion of patients, and may in particular help make the important discrimination between frontal and temporal focus.

We hope very much that the development of SPECT imaging of rCBF (and more recently of benzodiazepine receptor density) will reduce the need for the longterm and invasive EEG monitoring at present necessary in so many patients, rather than simply adding yet another test to an already excessive assessment.

To what extent this turns out to be possible will depend on the results of longterm assessment of its ability to predict surgical success.

RODERICK DUNCAN
JAMES PATTERSON
DONALD HADLEY
IAN BONE
Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK


New criteria for brain death?

The optimism of Facio et al1 in proclaiming short latency evoked potentials as the ultimate achievement in diagnosing brain death is unwarranted and their findings are not new. The data were gathered in a selected sample of cases from which an unselected number of patients was excluded. A more convincing and scientifically sound method would have been to examine consecutive admissions. The authors advocate the use of evoked potentials instead of EEG for the determination of brain death without having included EEG recordings in their study. The EEG should be included. The EEG is not. The EEG. A statement such as “the EEG is far from being relevant”, however, is far from being relevant and not at all supported by the facts presented. There is an ongoing discussion about the role of EEG in brain death partly due to technical problems and limited intraobserver reliability and interobserver agreement, but the same holds true for evoked potential studies.

The crucial question is whether one is using whole brain or brain stem death criteria. If brain stem criteria are used, as is done in the UK, short latency auditory evoked potentials (AEPs) have become a valuable tool in confirming brain death especially if intoxication is suspected; if a diagnosis of whole brain death is to be made, an additional EEG may even be mandatory, especially with infratentorial death. We are therefore recommending the French guidelines.2

The extinction of AEP wave III-V may be indicative of irreversible loss of brain stem function, particularly if their gradual disappearance has been documented. This was the case in only 4/46 (11%) in the report by Facio et al.1 If all waves including wave I are lacking at the first examination and damage to the eighth cranial nerve cannot be excluded, (as is often the case in brain stem death), the diagnosis may be flat due to other reasons. In this case an EEG cannot be considered confirmatory.

Also with somatosensory evoked potentials (SSEP) there may be some pitfalls in certain cases. They are the first to herald a fatal prognosis if cortical potentials disappear bilaterally.4 However, loss of cortically generated SSEPs is a bad prognostic sign but not proof of brain death, as both brainstem and cortical function must be lost (whole brain criteria), or loss of cortical function is of no relevance (brain stem criteria).4 SSEPs may also be contaminated by muscle activity obscuring brain death.9 Damage to the peripheral nerves, nerve roots and the medulla may preclude SSEP recordings. This renders AEP and SSEP in many cases a more valuable tool for excluding brain death than for confirming it. It should not go unnoticed that there are radiological methods suitable for confirming brain death and that all the conditions and close clinical scrutiny brain death may be safely diagnosed without confirmatory tests.10 In view of this situation there is little to support the enthusiasm of Dr Facco and his colleagues.

CJG LANG
Neurological Hospital, University of Erlangen, Schmuckhainlage 6, D-8520 Erlangen, Germany

Sphenoïdal electrodes in localising temporal epileptic focus, in association with CT, MRI and SPECT.
L Septien and M Giroud

J Neurol Neurosurg Psychiatry 1991 54: 1030
doi: 10.1136/jnnp.54.11.1030

Updated information and services can be found at:
http://jnnp.bmj.com/content/54/11/1030.1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/