564
and not days old. 

The possibility of myxopapillary ependymomas arising from ependymal cells alone and not requiring contact with fibrous tissue becomes more feasible with the report of myxopapillary ependymomas arising from extra dural sacrococcygeal regions, the cervico-thoracic cord, the lateral ventricle and the nerve roots, as in this report.

I am grateful to Mr DG Hardy, Consultant Neurosurgeon, Addenbrookes Hospital and the Neurosurgeons and Neuropathology departments of Addenbrookes Hospital.

ANANT SHARMA

Addenbrooke's Hospital, Cambridge

Correspondence to: Dr Sharma, Royal Eye Unit, Kingston Hospital, Wolverton Avenue, Kingston upon Thames KT2 7QB, UK.


Figure Preoperative myelogram demonstrating intradural extramedullary defect and postoperative radiograph documenting drawing pin position.

loss of coordination when walking. Examination showed mild spastic quadriplegia.

Myelography demonstrated an intradural extramedullary tumour extending from C1–C3 (fig.).

A C1–C3 laminectomy was performed in the prone position. The dura was opened and the meningioma identified. This proved to be extremely tough and could not be removed with an ultrasonic aspirator. It was therefore removed piecemeal with cutting loops and rongeurs.

There was considerable haemorrhage from arterial veins in the tumour bed and from the extradural venous plexus. The tumour had an en-plaque origin and haemorrhage was controlled by diathermy, packing, local pressure and suction. These manoeuvres allowed 75% of the tumour to be removed resulting in decompression of the cervical cord.

At this stage it became increasingly difficult to stop the haemorrhage from the extradural venous plexus despite using all conventional haemostatic methods. The bleeding was staunched by continuous pressure exerted on the bone and muscle, but the close proximity of the cerebral cord prevented maintenance of pressure despite the use of suture butters. The patient had received a 30 unit transfusion becoming hypotensive for only a brief period.

The remaining haemorrhage was immediately and completely controlled by a drawing pin passed through the dura transfixing an extradural patty to the wall of the vertebral canal (fig). This provided permanent tamponade of the extradural venous plexus.

The wound was closed and the patient made an uneventful post operative recovery with significant improvement in his neurological condition and no wound infection.

Excluding the cranial dural sinuses there are three sites in the body with thin walled venous plexuses which are prone to bleed during surgery: the pre-sacral plexus, the prostatic plexus, and the spinal extradural venous plexus.

Once bleeding has started attempts at haemostasis often seem to provoke more oozing elsewhere.

The use of drawing pins to tamponade venous plexuses to control bleeding is not a new idea. The method was first used in rural China to control life threatening haemorrhage during rectal operations. 1 Khan et al 2 and Nivatvongs et al 3 discuss four such cases. They describe the use of specially constructed titanium pins and add the cavities of possible reaction to the metal used or superadded infection.

In our case an autoclaved sationer’s brass drawing pin was used to tamponade the extradural plexus. The risk of death or morbidity from continuing haemorrhage was felt to outweigh any possible complications either from the metal constituents of the pin or from subsequent infection. Prophylactic antibiotics were used.

We describe this technique in the hope that other neurosurgeons may find it useful for the temporary or permanent control of haemorrhage or in situations where temporary dural fixation is impractical using standard methods.

KM MORRIS

GFG FINDLAY

Mersey Regional Department of Medical and Surgical Neurology, Walton Hospital, Liverpool, UK

Correspondence to: Mr Morris.

Spinal extradural venous haemorrhage controlled by a drawing pin: a new technique in neurosurgery.

K M Morris and G F Findlay

J Neurol Neurosurg Psychiatry 1991 54: 564
doi: 10.1136/jnnp.54.6.564

Updated information and services can be found at:
http://jnnp.bmj.com/content/54/6/564.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/