is difficult to document until loss of brain bulk can be documented on delayed CT or MRI scans.

HAROLD A WILKINSON
Division of Neurosurgery, Department of Surgery, University of Massachusetts Medical Center, Worcester, MA, USA

The paper by Leininger, et al reported that the pursuit of litigation had no effect on neuropsychological status after cerebral concussion, and that the cognitive deficits were attributed to a secondary dysfunction. These conclusions, drawn from a clinical series of symptomatic patients, warrant scrutiny.

The authors provide no information as to how they classified their patients into groups "pursuing trauma patients" or "not pursuing litigation". Merely asking patients if they have filed a lawsuit does not provide the information necessary to classify their claim status. Some of the patients may have been injured in work-related accidents, claims for damages may have been made against insurers without pursuit of litigation. Furthermore, the patients studied could have filed lawsuits after their neuropsychological evaluations; all of them were seen within 22 months of their injury. These results are contrary to our own.

In a recent paper Binder and Willis reported a very strong relationship between the pursuit of a claim and performance on a measure specifically designed to assess motivation to remember, the Portland Digit Recognition Test. Our study compared minor head trauma patients to patients with well-documented cerebral dysfunction who were not seeking financial compensation. Our minor head trauma patients were not pursued or chronic, seen an average of two years after their trauma, than the patients studied by Leininger et al, a factor which may have affected the results.

Leininger et al equated the cognitive deficits of the concussed patients with cerebral dysfunction. The possible existence of co-morbidities in the minor head injured patients make this relationship tenuous, however. The majority of the minor head injury patients were injured in motor vehicle accidents. Consequently, they may have had orthopaedic injuries and been treated with anxiolytic medications. Some of them may have developed anxiety disorders or depression as a result of their accidents and may have been treated with psychotropic medications. The authors provided no information on chronic pain, psychiatric state on medication use. These variables are also associated with cognitive abilities and may have accounted for the differences between the concussed and control subjects. Controlled studies of consecutive acutely injured patients followed prospectively have shown normalisation of cognition within a few weeks of minor head trauma, using measures no less sensitive than those employed in the study of symptomatic patients by Leininger et al.

LAURENCE M BINDER
Psychology Service, VA Medical Center, Portland Division, 3710 Southeast US.

Veterans Hospital Road, PO Box 1034, Portland, Oregon 97207, USA

Low plasma iron status and akathisia

Barton et al reported a significant inverse correlation between plasma iron levels and akathisia syndrome. This finding is important. However, three of their akathisic group had low plasma iron levels (about 50 ug/100 ml). Since the association between restless legs syndrome and low plasma iron is generally accepted, their three patients might not have akathisia but the restless legs syndrome.

Although akathisia and restless legs syndrome are clinically similar (floor pacing, marching on the spot, and body rocking or in both conditions), the symptoms of akathisia are prominent throughout the waking hours. Conversely, the symptoms of restless legs are more prominent at night. It suggests that the circadian rise of possible some hormone could be related to the symptoms of restless legs syndrome, but not to those of akathisia. Sandky et al pointed out that one of the possibilities may be melonocytic stimulating hormone (MSH).

Further research is required to differentiate between akathisia and restless legs syndrome, and measuring MSH may be helpful.

TAKESHI TARAO REIJI YOSHIMURA
Department of Psychiatry, University of Occupational and Environmental Health, School of Medicine, Kitakyushu 807, Japan

Bowie and Ebenezer reply:

We are pleased to answer Terao's and Yoshimura's comments relating to the differential diagnosis of our akathisic patients, particularly in those with plasma iron levels about 50 ug/100 ml. Using Walters' summary of the clinical characteristics of restless leg syndrome, the three patients in question 1 did not suffer periodic movements in sleep. Motor restlessness was in evidence during the day, but not during the night; 3) periodic movements in sleep had not been observed, although no systematic observation during sleep had taken place; 4) there was no family history of restless leg syndrome, and finally, 7) symptoms and signs occurred during wakening hours and not at night.

We would therefore maintain that these patients had neuroleptic akathisia rather than restless leg syndrome. This, of course, leaves open the possibility of a "common pathway" of both syndromes evident by the association with lower iron levels. Terao and Yoshimura state that "the association between restless leg syndrome and low plasma iron is generally accepted" referring to Ekbo's seminal paper. In fact, Ekbo found iron deficiency in only 19 of 77 unselected patients. On the other hand, he stated that in patients with iron deficiency of less than 60 ug/100 ml, the incidence of restless legs was 24%. This suggests to us that iron deficiency is neither a necessary nor a sufficient cause of restless leg syndrome, or indeed (drug-induced) akathisia.

J BOWIE
KP EBMEIER
MRC Brain Metabolism Unit,
Royal Edinburgh Hospital,
Edinburgh, UK

Pupillary disturbances in migraine: what is the relation to autonomic dysfunction?

The proposal that decreased cerebral sympathetic outflow (and an increase in facial blood flow) follows trigeminal nerve activity during migraine is not consistent with greater eyelid separation and meiosis on the side of the headache and the poor correlation between meiosis and ptosis during and between migraine attacks. Although the pupillary reflex to darkness is regarded primarily as a sympathetic reflex, pupillary dilation in darkness occurs in the human sympathetomised eye but is less complete. In the analysis of pupillary light reflexes it is important to remember that a well-trained degree of central sympathetic tone is necessary for the full development of the constrictor action.

Electrical stimulation of the infratrochlear nerve (which is supplied by the oculosympathetic nerve and activates the superior cervical ganglion) resulted in pupillary constriction in normal volunteers thus raising the possibility of a contribution of iris trigeminal fibres towards the development of meiosis during migraine headache through an antidromic discharge. In contrast to electrical stimulation of the ophthalmic division of the trigeminal nerve (which was found to be relatively ineffective), mechanical stimulation of the nerve, both with and without stellate ganglionectomy,
was found to be highly effective in inducing changes in the intraocular pressure (IOP) and vasodilatation in the uvea in the rabbit; the reaction seems to be common in conjunction with an axon reflex mediated by the peripheral branches of the nerve, at the endings of which some active histamine-like substance is liberated, causing pupillary dilatation and intraocular vasodilatation.¹

Can mechanical activation of iris trigenimal nerve terminals develop naturally and contribute to miosis seen during and between attacks? Acute elevations in the IOP have been shown to discharge impulses in iris nerve fibres (both whole nerve and corneo-scleral fibres) probably due to mechanical distortion of the iris and the chamber angle which suggests the production of painful impulses described in experimental animals.⁴ An association between mioreg and low-tension glaucoma (LTG) has been suggested recently,⁵ the differential diagnosis of LTG should include the whole diurnal fluctuations in which high pressures are occurring at times when they are not being recorded. Given the central importance of the effects on autonomic dysfunction and autonomic hypofunction in those with migraine during headache-free intervals⁶ allow development of a relatively higher IOP in response to a variety of stimuli and situations, thereby resulting in exaggerated fluctuations in the pressure that possibly contributes both to visual field loss and mechanical activation of iris nerve fibres.

The results of studies of autonomic nervous system dysfunction in migraine have been contradictory.⁷ Besides wide normal inter- and intra-individual variations in the reactions of the autonomic nervous system, it may be useful (and not necessarily simplistic) to distinguish hyperfunction from migraine attacks as an adaptive (secondary stress) response liable to "fatigue" variably in the later stages of severe headache, one function of which may serve to limit the effects of vasodilatation (of intraocular and cranial blood vessels) resulting from antidromic discharge from trigenimal nerve fibres.

VASOCONTRACTION

Drummond replies:

I thank Dr Gupta for his comments and for the opportunity to clarify a point which was not clear in my paper.¹ In 62 patients with headache on the usually-affected side the pupil was smaller, on average, and eyelid separation greater, on the symptomatic side. These autonomic disturbances, however, were not normally observed in the same patients. In fact, miosis was usually associated with ptosis on the symptomatic side during attacks of migraine (in darkness, r = 0.392). Since miosis persisted during the headache-free interval¹ it seems likely that, in some cases, permanent ocular sympathetic deficit prevented greater eyelid separation on the affected side during attacks of migraine.¹

Discharge of the trigeminal nerve could have contributed to mirosis during migraine, but this is unlikely to be the mechanism of mirosis during the headache-free interval.¹ On the other hand, thermoregulatory flushing is reduced on the usual side of migraine headache,² consistent with a decrease in cervical sympathetic outflow.³ Intracranial pressure does not increase on the sympathetic side during attacks of migraine³ which argues against the idea that autonomic disturbances are due solely to trigeminal discharge.

Thirty years ago, Walsh and O'Doherty⁴ suggested that swelling of the internal carotid artery during migraine could cause ophthalmoplegia, either by direct pressure on nerves in the carotid siphon, or by interfering with the local circulation of the involved nerves. Narrowing of the internal carotid artery, presumably due to oedema, was demonstrated by arteriography in two of three selected cases. This same process could cause a cervical sympathetic deficit in migraine, because sympathetic fibres supplying the eye and skin of the forehead form a plexus around the internal carotid artery.

PD DRUMMOND

Psychology Section, Murdoch University, Murdoch, Western Australia

Increased risk of multiple sclerosis among nurses and doctors

A recent study concluded that the multiple sclerosis (MS) death rates in British nurses and qualified medical practitioners was not greater than expected. However, as part of a population-based prevalence study of MS in North East Scotland,¹ the occupation of all economically-active females and males over 15 years of age was classified at the time of onset of the disease and compared with the distribution of economically-active males and females in North East Scotland born on the mid-1961 Census.¹ Femine female nurses (occupational group 282) had MS (expected 6-2) and four male medical practitioners (occupational group 280) were affected whilst 0-8 were expected (both p < 0.001).²

While the actual numbers involved were small, particularly for medical practitioners, an analysis of occupation at the time of onset of MS will nevertheless, produce a less biased assessment than assessing occupational status at the time of death, given the well-recognised downward occupational drift in chronic disabling diseases such as MS and accepted by Dean and Gray.¹ I conclude that, at least in North East Scotland in 1970, there was an excess risk of MS among female nurses and possibly among male doctors.

DAVID J SHEPHERD

Department of Neurology, North Manchester General Hospital, Manchester, UK

¹ Dean D, Gray R. Do nurses or doctors have an increased risk of developing multiple sclerosis? J Neurol Neurosurg Psychiatry 1990;53:899-902.

Gray and Dean reply

We are grateful for Dr Shepherd's comments on our study of mortality from multiple sclerosis (MS) among doctors and nurses¹ and for his interesting data suggesting an excess incidence of MS among doctors and nurses in North East Scotland.

Dr Shepherd suggests that downward occupational drift by the time of death could explain the lack of any excess of MS deaths among doctors and nurses in our study. However, we believe this to be unlikely—particularly for medical practitioners. The British doctors study was a prospective study and the occupation of medical practitioner was used as the definition of this profession to be included. Occupation was determined from the 1951 British Medical Register and not from the death certificates.

There may be three explanations for the excess incidence seen among doctors and nurses in Dr Shepherd's study. First, the methods of identifying patients¹ are likely to have resulted in over-representation of doctors and nurses. To supplement the original register of patients with MS further patients were identified by visits to local hospitals and extensive surveillance of their records. A further 73 cases in this study were identified by asking the patient to recall any additional cases that they knew of. As a result, nurses and doctors with MS seem more likely to be identified than those in non-medical professions.

Second, using the 1961 census data to estimate the proportion of economically active males and females who are doctors or nurses in 1970 may have introduced some bias if the proportion who were doctors and nurses has decreased over period.

Finally, doctors and nurses may have MS diagnosed earlier in the disease than other MS sufferers. Again, this "lead time" bias is likely to suggest—artifactually—that there is...
Pupillary disturbances in migraine: what is the relation to autonomic dysfunction?

V K Gupta

J Neurol Neurosurg Psychiatry 1991 54: 847-848
doi: 10.1136/jnnp.54.9.847-c

Updated information and services can be found at:
http://jnnp.bmj.com/content/54/9/847.4.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/