Sumatriptan: efficacy and contribution to migraine mechanisms

"I think the sensory symptoms of the paroxysm are owing to a "discharging lesion" of the corollations evolved out of the optic thalamus, i.e. of "sensory middle centres" analogous to the "motor middle centres". I believe the headache and vomiting to be post-paroxysmal." (J Hughlings Jackson)

Recent therapeutic claims in migraine have been based on the responses of the intracranial circulation to manipulation of serotonin (5-HT) receptors. These prompt careful reappraisal, firstly, of what causes head pain, and more specifically, migraine; and secondly, of the claims of benefit for a new pharmacological agent.

Head pains arise from distortion or inflammatory processes in sensitive intracranial structures: the dura, arteries and veins, paranasal sinuses, the eyes, and cerebral spine. The innervation of all these structures is via the trigeminal nerve and the upper three cervical nerve roots.

On the afferent side there is the nucleus caudalis (a laminated part of the spinal trigeminal nerve to C1-C3). Pain fibres descend in the spinal root of the trigeminal nerve to C2 where they converge with afferents from C1-C3 on second order neurons. This provides a pain pathway from head to neck and vice-versa. Efferent axons ascend to brainstem nuclei. The raphe nuclei and locus coeruleus project rostrally to the cortex, and caudally as part of the endogenous pain control circuit. Stimulation of these brainstem nuclei and of the trigeminal complex increases extracranial blood flow by reflex connection with the parasympathetic part of the facial nerve - via the greater superficial petrosal nerve, sphenopalatine and optic ganglia. This constitutes a link between neural and vascular mechanisms, the "trigemino-vascular reflex".

5-HT, agonists (for example ergotamine, sumatriptan) bind to vascular receptors and constrict dural and pial vessels. Plasma extravasation (PE) can be stimulated by perivascular sensory fibres which release neurokinin A, calcitonin G related peptide (CGRP) and substance P. These neuropeptides, present in unmyelinated C fibres, can be released by antidromic trigeminal stimulation from perivascular sensory axons; this induces vasodilatation and extravasation of plasma protein (neurogenic inflammation) with an increase in CGRP in plasma. If pretreatment with dihydroergotamine and sumatriptan is given, the levels of CGRP in plasma are reduced, thus providing an explanation for blockade of neurogenic inflammation, the putative cause of pain.

Second order neurons can be suppressed by experiment-
adenosine mediate the vasodilatation following the initial vasospasm. ATP stimulates primary afferent terminals in the cerebral vasculature. Studies have shown that the ATP induced cerebral vasodilatation depends on the endothelium being activated by P2Y-purinoceptors on the endothelial cell surface and subsequently releasing endothelium-derived relaxing factor (EDRF). Endothelial cells are the main source of the ATP, although adenosine 5'-diphosphate and ATP released from clumped platelets may produce vasodilatation. A purinergic mechanism may also be involved in the initial local vasospasm, via P2X-purinoceptors on smooth muscle cells occupied by ATP released either as a cotransmitter with noradrenaline from perivascular sympathetic nerves or from damaged endothelial cells.

The aura is associated with regional spreading oligaemia (about 20% reduction of flow) which may be succeeded by increased extracranial blood flow during headache. In classic migraine, the slow march of neurological symptoms correlates with a wave of spreading oligaemia that traverses the cortex from the occipital region at 2–3 mm/minute. Cortical spreading depression is a slowly moving suppression of electrical activity that propagates across the cortex at a rate of 2–5 mm/minute, accompanied by a disruption of ion homeostasis, neuronal depolarisation and increased energy metabolism. The spreading oligaemia of classic migraine correlates with spreading depression evoked in animal experiments. Leão’s theory that spreading depression plays a role in migraine pathophysiology has, however, not been clearly demonstrated in humans. As both Hughlings Jackson and Gowers noted, cerebral vascular changes are unlikely to be fundamental to headache mechanisms and we now know that pain can start during cerebral oligaemia in classical migraine, and flow does not consistently alter during common migraine. For comparison, in cluster headache, normal results are found for regional cerebral blood flow (rCBF) and SPECT [using hexamethylpropyleneamineoxime (TcHMPAO)] in small vessels during and between attacks. Transcranial Doppler studies show decreased velocity in the middle cerebral artery simultaneously with unaltered blood flow suggesting vasodilatation.

The neural hypothesis of migraine, reiterates the writer’s hypothalamic hypothesis of an internal clock reacting to a variety of diurnal circadian rhythms and to cyclical psychogenic, hormonal and vegetative activities. These in turn activate autonomic and brainstem pathways resulting in secondary vascular changes which release the inhibition of pain conveyed in the trigemino-vascular system: thence headaches. Painful distension of dural vessels, and of scalp arteries mediated through the greater superficial petrosal nerve explains the throbbing pulsatile pain in some subjects. Neuronal changes are primary, with secondary effects on the microcirculation causing oligaemia and the aura.

The cerebral mechanism is responsive to mood, emotions, tiredness, stress, relaxation, hormonal changes, as well as to peripheral stimuli such as bright lights, noise and possibly atmospheric changes. Its threshold is susceptible to hypothalamic function which in turn is modulated by seasonal patterns, diurnal and biological clocks and by hormonal factors 3–6 seen in the remission in pregnancy in many patients and a worsening in those on oral contraceptives.

Monoamine depletion of brainstem nuclei may result in low platelet serotonin storage or release. Reserpine precipitates migraine attacks and releases platelet and other stores of 5-HT.

The importance of 5-HT receptors is confirmed by the observations that intravenous 5-HT relieves headache; reserpine (a 5-HT depletor) induces headache; and by the demonstrated efficacy of the 5-HTsub2 antagonists, methysergide and pizotifen, as prophylactics, and of ergotamine and sumatriptan (both 5-HTsub1 agonists) in treatment of acute attacks. But it is simplistic to regard migraine as a “low serotonin syndrome”.

The fashionable neuro-excitatory chemicals, glutamate and aspartate (NMDA) have been investigated as putative initiators of “spreading depression” both between and during attacks. Higher blood levels were found between attacks in both migraine groups compared with tension headache and control subjects. Further elevations of glutamic acid were found during attacks. The results suggest a defective cellular reuptake mechanism for glutamate and aspartate in patients with migraine which may indicate a similar defect in neurons and glia predisposing the brain of those with migraine to Leão’s spreading depression.

Olesen has reconciled the vascular and neurogenic elements as a “vascular-supraspinal-myogenic model”.

Headache intensity is determined by the sum of nociception from cranial arteries and pericranial myofascial tissues which converge upon the same neurons and are under supraspinal facilitatory control. Vascular input dominates myofascial input in migraine, and vice versa in tension headache. Long term potentiation due to nociceptive activation and sensitisation of neurons may lower the threshold to headache.

The rationale for the use of drugs acting on 5-HT mechanisms depends on the presence of receptors for 5-HT in cranial arteries and elsewhere in the CNS, where they play a role in the neural control of cranial vessels and endogenous pain control systems (vide supra). Since migraine symptoms reflect both neural and vascular phenomena it is likely that 5-HT receptor activity is but one relevant factor. It is probable that many prophylactics act by central 5-HTsub2 antagonism, whereas control of an attack relies on constriction of cranial vessels mediated by 5-HTsub1 receptors.

Research on sumatriptan has helped to clarify 5-HT receptor functions and diversity, and has contributed to our still incomplete understanding of the pathogenesis of headache. Sumatriptan is a specific and selective agonist of 5-HTsub1 receptors of cranial blood vessels causing vasoconstriction. It has negligible effects on 5-HTsub2, 5-HTsub3, dopaminergic, muscarinic or noradrenergic receptors (compared with ergotamine). Sumatriptan does not penetrate the blood-brain barrier and has no CNS effects. Systemically, it has no effect on pulse or blood pressure. It selectively reduces flow in the internal carotid arteries and in cranial and dural vessels. Intravenous sumatriptan does not change rCBF; it constricts the carotid vascular bed, but has no effect on pial vessels in cats. It has 96% bioavailability subcutaneously and 14% orally, with a plasma half-life of 2 hours. Its clearance is 80% by the liver, 20% by the kidneys where it is excreted as an indole acetic acid analogue.

Early trials of the subcutaneous preparation in a 6 mg dose showed relief of headache in 77% patients at 60 minutes, and in 83% at 2 hours with corresponding improvement in nausea, vomiting and photophobia. It is also effective in cluster headache with relief of symptoms at 15 minutes in 74% compared with 26% given placebo.

The subcutaneous preparation will almost certainly be superseded by oral medication (100 mg) which provides relief in about 70% of attacks within two hours. Second and third attacks respond as well as the first. Comparative trials have shown slight, but significant superiority to aspirin 900 mg plus metoclopramide 10mg. Legg et al (1990 unpublished information) reported 358 pts in 3
consecutive attacks of migraine. In the first attack, 56% responded to sumatriptan; 45% responded to aspirin and metoclopramide (p = 0.078). In the second and third attacks the responses were 58 and 65% for sumatriptan, 36 and 34% for aspirin and metoclopramide (p = 0.001).

The onset of relief is faster but there is a higher rate of minor side effects. Recurrence of headache within 48 hours was 42% for sumatriptan and 33% for aspirin and metoclopramide.24 In a randomised double-blind comparison of sumatriptan and cafegrot,25 100mg oral sumatriptan relieved headache after 2 hours in 66% compared with 48% of those given oral cafegrot. However, the well known poor oral absorption of ergotamine is a serious limitation of this study and comparison with inhaled or rectal ergotamine will be of importance.

Goadsby et al26 recently showed a good response to oral sumatriptan in 51% of patients at 2 hours compared with 9% given placebo; rescue medication was needed in 41% of the sumatriptan group, but in 88% of the placebo group. Of 28 patients who were free of headache at 2 hours, 11 (39%) had recurrent headache within 24 hours, a significant rebound effect which may owe as much to the natural history of migraine as to a true pharmacological effect.

Toxicity was not a major problem in 6500 patients and 35 000 attacks.27 There are so far, no proven cardiovascular, CNS or other serious sequelle. Vague chest discomfort occurs in one third of patients and is a cause for concern as a transient 13% reduction of coronary lumen has been shown; but ECG changes are rare and coronary angiography has shown no instance of occlusion. Nausea, vomiting, taste disturbance, tingling, all seemed mild and transient, occur in about 38% patients within the first 4 hours. The problem of recurrence (? rebound) in about one third of patients needs to be clarified by experience, especially since a second headache responds well to further sumatriptan, but obviously compounds the pressing issue of cost.

Sumatriptan appears to be a significant advance in migraine treatment.28 It is an effective, safe and prompt remedy for the acute attack, suppressing all the symptoms, not just headache alone. However, it works in 70% of sufferers—not in every patient. The present high cost (£41 for two injections, £8 for one 100 mg tablet) limits its use.

In an attack, aspirin, paracetamol or codeine, combined with anti-emetics form the first line of treatment. Ergotamine (usually by suppository or inhalation) remains effective in 50–60% and is useful if too frequent doses are avoided. However, for patients prone to unusually refractory, severe or inconveniently timed attacks, sumatriptan promises to be the drug of choice. Before its final place in migraine treatment can be defined wider clinical experience is needed.

JMS PEARCE

Department of Neurology, Hull Royal Infirmary, Hull, UK

Correspondence to: 304 Beverley Road, Anlaby, Hull, HU10 7BG, UK

5 Moskowitz MA, Buzzi MG, Theotariacs TC, Dimitriosdou V. Evidence that 5-HT receptors on trigeminovascular axons mediate the ant-migraine effects of ergot and sumatriptan. Neurology 1991;41(suppl 1):164.
8 Friberg L, Olesen J, Iversen H. Regional cerebral blood flow during attacks and when free of symptoms in a large group of migraine patients. Cephalalgia 1986;vol (suppl) 10:29-30.
9 Lauritzen M. Cortical spreading depression as a putative migraine mechanism Trends Neurosci 1987;10(6-13).
Sumatriptan: efficacy and contribution to migraine mechanisms.

J M Pearce

J Neural Neurosurg Psychiatry 1992 55: 1103-1105
doi: 10.1136/jnnp.55.12.1103

Updated information and services can be found at:
http://jnnp.bmj.com/content/55/12/1103.citation

Email alerting service

Received email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/