Homolateral ataxia and crural paresis: a syndrome of anterior cerebral artery territory infarction

Julien Bogousslavsky, Rosario Martin, Thierry Moulin

Abstract
Five patients with superficial anterior cerebral artery territory infarcts in the paracentral area are reported, who developed a hemiparesis which was predominant in the leg, and with homolateral ataxia in the arm. A similar neurological picture was not observed in 1736 patients who were admitted over an eight year period to a primary care stroke centre with their first stroke. Involvement of corticopontine fibres at their origin, together with damage to the lower limb motor strip or underlying white matter, appears to have been the cause of a clinical syndrome (homolateral ataxia and crural paresis) which has been ascribed to lacunar infarction.

(F J Neurol Neurosurg Psychiatry 1992;55:1146–1149)

Patients and methods
Four of 1800 consecutive patients admitted to a primary care stroke centre over the past 8 years (Lausanne Stroke Registry) showed acute crural paresis and homolateral ataxia of the arms. All had an ACA territory infarct on CT or MRI. All patients underwent the standard protocol of investigation of the Lausanne Stroke Registry; they were assessed neurologically by at least one staff neurologist. Neuropsychological examination included tests from a standard battery performed in our institution. A fifth patient from another stroke centre was included because he showed the same neurological and radiological picture. For clinical and topographical correlations, we reconstructed radiological findings in the sagittal plane using a method previously reported for assessing the topography of ACA territory infarcts.

Four patients had a left-sided infarct and one had a right-sided infarct. The ACA territory infarct was partial in all five patients (figure 1). At the cortical level, it was posterior to the central sulcus in two patients (3 and 5) and centred around the central sulcus in three patients (1, 2 and 4). In both patients with posterior cortical involvement, the infarct extended into the subcortical white matter anteriorly. All patients had hemiparesis involving only or predominantly the leg, usually more proximal than distal, with homolateral extensor-plantar reflexes. Homolateral ataxia involved the arm in all five patients (in the absence of significant weakness) and also the leg in the patients in whom weakness did not preclude examination. Four patients showed no sensory dysfunction and only one (patient 3) had impairment of position sense in the legs. No patient had gaze disturbance, incontinence or grasp reflex.

Case reports
Patient 1 A 60 year old woman without known vascular risk factors developed acute clumsiness in the right arm and leg which gradually deteriorated over 24 hours. On examination, the day after onset, she was alert, oriented, and had normal speech. Cranial

Figure 1 Topography of anterior cerebral artery infarcts in five patients. Sagittal reconstruction (After references 1–5).
Homolateral ataxia and crural paresis: a syndrome of anterior cerebral artery territory infarction

Nerves were normal. She had a spastic paresis in the right leg, which was predominant proximally. Strength was normal in both arms. Light touch, temperature, pain, position and vibratory sensation were all normal. Tendon reflexes were increased in the right arm and leg, and plantar responses were extensor. There was marked difficulty in performing the finger-to-nose test on the right, with irregular accelerations producing oscillations. Rapid alternate movements were slowed and superimposed with gross saccades. Blood pressure was 130/80 mm Hg. CT three days after onset showed an area of decreased lucency with contrast enhancement in the left ACA territory over the central sulcus (see figure 1). Carotid angiography, transthoracic and transoesophageal echocardiography were normal. An extensive battery of blood and urine tests was normal. Six months after the stroke, only a slight crural paresis persisted, but a marked impairment was present in the right arm and leg, demonstrated by coordination tests.

Patient 2 A 49 year old woman with a history of hypertension, smoking and several previous episodes of transient ischaemic attacks involving the face and left arm and leg, developed acute weakness and clumsiness in the left leg with left arm incoordination. On examination 36 hours after onset, she was alert and oriented in time and place. She had a left hemiparesis with only slight involvement of the face and arm, but with lower limb hemiplegia. Light touch, temperature, pain and vibration sense were normal. On the left, she had difficulty in performing the finger-to-nose test, with irregular tremor and corrective movements. Tendon reflexes were increased on the left with an equivocal plantar response. Neurological examination was normal. Blood pressure was 160/80 mm Hg. CT performed six days after admission showed an area of decreased lucency with contrast enhancement in the right ACA territory over the central sulcus (see figure 1). Extracranial and transcranial Doppler ultrasounds, two-dimensional echocardiography, and an extensive battery of

Figure 2 Patient 3. (left) Gadolinium-enhanced MRI T1 weighted scan two weeks after stroke showing an area of increased signal in the left ACA territory, posterior to the central sulcus. (right) MRI scan eight months later showing focal atrophy as a sequela.
Blood pressure was 170/100 mm Hg. MRI three days after stroke showed an area of increased signal on T2 weighted images in the left ACA territory (see figure 1). Doppler ultrasounds suggested a left internal carotid artery occlusion. Two-dimensional echocardiography and a standard battery of blood and urine tests were normal. Six months after the stroke, his right leg was hypertonic but without paresis or incoordination.

Patient 5 An 81 year old woman without known vascular risk factors suddenly developed right-sided weakness. On examination 15 hours later, she was alert and oriented. She had a right hemiparesis only slightly involving the face and arm but her leg was severely affected. Light touch, temperature, pain, position and vibration sense were normal. Tendon reflexes were normal but plantar responses were extensor on the right. There was marked ataxia on the right shown by the finger-to-nose test. She could not perform the heel-to-knee test on the right. Neuropsychological examination showed an impairment of verbal comprehension, agaphria and ideomotor apraxia. CT on admission was normal but 14 days later it showed a haemorrhagic infarction in the left ACA territory posterior to the central sulcus (see figure 1). The CT scan of this patient has been published before.15 One month after onset, a slight, right-sided paresis with ataxic gait persisted.

Discussion

The term homolateral ataxia and crural paresis was introduced in 1965 by Fisher and Cole15 to describe patients with hemiparesis predominating in the leg and ipsilateral hemiataxia predominating in the arm. These authors reported 14 patients, but details were given in only four; in one of them, necropsy showed multiple infarcts, including one in the internal capsule and one in the pons, contralateral to the signs. Since that report, homolateral ataxia and crural paresis has often been considered to be just a variant of the lacunar syndrome ataxic hemiparesis, and most recent clinical studies of lacunar syndromes have not distinguished it within the ataxic hemiparesis group.10 16-19

Very few patients with homolateral ataxia and crural hemiparesis have been specifically reported since 1965. In five patients2-4 the infarct was capsular on CT, but the patients either had marked associated disturbances (hemisensory dysfunction, dysarthria) or the homolateral ataxia and crural hemiparesis was only part of the evolution of an initially more severe hemiplegia. In three other patients,3 4 9 CT showed an infarct involving the upper part of the corona radiata adjacent to the lateral ventricle, an area that is, in fact, just underneath the cortex of the paracentral region, and which corresponds to the sub cortical part of the ACA territory infarcts seen in our five patients. This location had been predicted over 70 years ago in patients with crural monoplegia with predominaing cerebellar symptoms.20-22

In fact, it has been known for many decades that paracentral tumours may yield pseudocerebellar ataxia as the main clinical manifestation.23 24 More recently, Mizon and Rosa5 reported a patient with homolateral ataxia and crural hemiparesis associated with a parasagittal meningioma.

In ataxic hemiparesis, the ataxia has been tentatively interpreted by involvement either of the fibres connecting the ventrolateral nucleus of thalamus and precentral cortex or of the corticopontine fibres.10 Hemiataxia or cerebellar signs from paracentral lesions have been attributed to involvement of the paracentral contingent of Arnold's frontopontine bundle or of Türck's parietopontine bundle.25-27 So it is not surprising that in patients with an ACA territory infarct critically placed, involving both the corticopontine fibres at their origin and the lower limb motor strip (or underlying white matter), a picture of homolateral ataxia and crural hemiparesis may result. We did not observe this neurological picture in 1736 patients with their first stroke who were admitted during an eight year period, so we believe that ACA territory infarction may be the principal cause of this syndrome.

It is likely that this syndrome can also be produced by subcortical infarction involving the uppermost part of the corona radiata just below the paracentral cortex.5 6 9 We must emphasise that only one of our five patients (patient 5) showed neuropsychological disturbances pointing to a superficial lesion, whereas all the others only had the motor dysfunction. Our findings suggest that homolateral ataxia and crural hemiparesis is not a lacunar syndrome, and that it should not be considered to be merely a variant of ataxic hemiparesis.

R Martin is on leave from the University of Alicante and is supported by a grant from the Council of Europe number 90062

Death of Wegener

The sad death of Friederich Wegener in 1990 may remind neurologists that the nervous system is affected in 48% of patients suffering the illness which bears his name. Wegener studied medicine in Munich and Kiel. In 1933 his first post-mortem was of a patient with granulomatous vasculitis. He presented this case with two other cases from Chemnitz and Breslau to the German Society of Pathology at Breslau in 1936. Aschoff had noted the disease was different from periarteritis nodosa. He published his observations in his classic paper1 "On a peculiar rhinogenic granulomatosis with particular involvement of the arterial system and the kidney".

He settled in Lübeck working as a lecturer in Pathology and fulfilling many invitations to lecture on the arteritides. Lübeck bestowed on him the "Doctor Medicinae Honoris Causae" on his retirement. He was pleased with the advent of effective therapy with cyclophosphamide and prednisolone; and with the serological aid to diagnosis afforded by the demonstration of granular fluorescent antinuclear cytoplasmic antibody in significant titre.

Early in 1990 he lectured to the International European meeting on Wegener's Granulomatosis and Related Vasculitic Syndromes in Zweibrücken. He died aged 83 on 9 July 1990.

JMS PEARCE

J Bogousslavsky, R Martin and T Moulin

J Neurol Neurosurg Psychiatry 1992 55: 1146-1149
doi: 10.1136/jnnp.55.12.1146

Updated information and services can be found at:
http://jnnp.bmj.com/content/55/12/1146

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/