LETTERS TO THE EDITOR

Treatment of Alzheimer’s disease

Three recent reports2–4 raise important issues about the treatment of Alzheimer’s disease (AD). PET studies5 may identify a pathology (glutamatergic hypoactivity) which would not respond to cholinergic receptor therapy6 and the MRC Committee7 do not appear to have directly addressed the issue of testing a drug, such as D-amino-3-isooxazolidone (D-cycloserine, DCS), which may simultaneously arrest progressive deterioration8 and improve mental performance.9

Although DCS has been in clinical use for some time, its apparent activity is only recently that a neurobiological action has also been recognised. In human brain DCS has been shown to displace strychnine-insensitive [3H] glycine binding,9 from what is generally considered to be the glycine B site of the N-methyl-D-aspartate (NMDA) receptor-ionophore complex. The drug has been proposed as a cognitive enhancer for a range of indications,5,9 based on partial agonist characteristics at the glycine site in rodent9 and oocyte preparations9 and its effect on learning in animals,3 as well as the known involvement of the receptor complex in long-term neuroplasticity and behaviour of model memory function.1–6

Due to the well documented role in excitotoxicity, the potential of the NMDA receptor complex as a therapeutic site has been viewed cautiously. Treatment of AD patients with a partial agonist at the glycine B site may circumvent problems associated with hyperstimulation either by coexisting cerebrovascular disease or a proposed pathological process in AD,10 which might be exacerbated by the action of β-amylloid protein11–13 on glutamatergic cells.12,13 DCS has now been shown to have such partial agonist characteristics in several paradigms, including AD brain tissue.14 We propose that it will have benefits for AD patients over and above all other types of cognitive impairment, not only because of the potential neuroprotective action but as it may alleviate glutamatergic hypoxia.

In brief, degeneration of columns14 of corticocortical glutamatergic pyramidal cells in circumscribed (parietotemporal) areas of cerebral cortex appeared to occur early in AD and caused a reduction in cortical area with selective reduction in acetylcholine, glutamate and serotonin. There was progressive sparing of other neurotransmitters15 and serotonin was thought to relate to non-cognitive behavioural problems.16 Cognitive deficits correlated with both the disappearance of pyramidal cells16 and their synapses17 assessed by cortical biopsy and scanning data by PET.20 This technique, which showed selective glucose hypometabolism in the parietotemporal lobes18 was sensitive to atrophy.21 Pathology was most prominent in these lobes18 and hypometabolism was not seen in cau when assessed in the cortical biopsies.17 The scans may therefore provide independent evidence of early structural damage to corticocortical neurons in parietotemporal areas, also revealed by blood flow imaging.22

Glutamatergic transmission may normally be the chief factor that sustains the activity of corticocortical neurons in the cortex.14,23 Thus the degeneration in the parietotemporal cortex probably reduces excitatory input into neurons and if this glycine B site of the NMDA receptor complex is not saturated by endogenous ligand, the partial agonist property of DCS may restore the receptor function of the cells without reaching excessive levels of activation. Reduced sensitivity of the receptor complex to glycine has been described in the neocortex of AD patients18 and if this and the well established glutamatergic hypoactivity should prove to occur with onset of symptoms, there would be even greater rationale for the proposed treatment, inspite of the fact that some19 have reached the pessimistic conclusion that a successful neurotransmitter-based therapy will not evolve. In the rat, low doses of DCS caused increased latency (passive avoidance task) and reduced trials to criterion (novel place learning). Although high doses in humans (in excess of 500 mg) may cause “confusion and disorientation with loss of memory” (Association of the British Pharmaceutical Industry Data Sheet) and a dose (15 mg) has been reported to antagonise cognitive impairment induced by scopolamine.21

In summary, on the basis of current knowledge we consider that treatment of AD patients with a low dose of DCS will be safe and effective. First, because of its non-specific effects on memory function.21 Second, by correcting a characteristic neuropsychological deficit in the disease (circumscribed corticocortical glutamatergic degeneration) which other proposed strategies fail to address, and finally by preventing the postulated excitotoxic damage.

DAVID M BOWEN
J T FRANCIS
ANDREW W PROCTOR
Institute of Neurology,
Queen Square,
London

ANNE B YOUNG
Harvard Medical School,
Boston, Mass 02114, USA

Treatment of Alzheimer's disease.

D M Bowen, P T Francis, A W Procter and A B Young

J Neurol Neurosurg Psychiatry 1992 55: 328
doi: 10.1136/jnnp.55.4.328

Updated information and services can be found at:
http://jnnp.bmj.com/content/55/4/328.1.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/