Acute sensory and autonomic neuropathy: possible association with Coxsackie B virus infection

G Pavesi, F Germignani, G M Macaluso, P Ventura, G Magnani, A Fiocchi, D Medici, A Marbini, D Mancia

Abstract
This report describes a 26 year old woman with a Coxsackie B virus infection complicated by an acute pandysautonomic and sensory neuropathy. Electrophysiological studies suggested an axonal neuropathy. A sural nerve biopsy performed early in the disease showed axonal degeneration with a virtual absence of unmyelinated fibres and moderate loss of myelinated fibres, mainly affecting the small fibres; this differs from previous reports. An immune-mediated or direct virus action might explain the pathogenesis of this unusual evolution of a viral infection.

Case report
A 26 year old Venezuelan woman was examined for blackout spells (that occurred when changing from a recumbent to an upright position), blurred vision and photophobia, ageusia, dry mouth and eyes, nausea, constipation, urinary retention and overflow incontinence, and transient confusion. She was seven weeks pregnant and previously healthy. She was referred with fever and headache, in association with diffuse mucosal and cutaneous maculopapular and vesicular erythema, for 10 days previously. The physical examination showed marked postural hypotension (supine blood pressure 120/80 mm Hg, unobtainable in a standing position) and fixed tachycardia (>100/min, unchanged with changes of position). There was a total absence of sweating, and hair and fingernails were dystrophic. Pupils were normal in size but unequal; the larger right pupil was unreactive to light, and accommodation, whereas the left pupil reacted slightly to light. Extraocular movements, pursuit and convergence were intact; corneal reflexes were present. Lacrimation was completely absent. The salivary flow was reduced and taste was distorted.

The other cranial nerves were unremarkable. Strength was mildly impaired in the distal limb muscles; moderate limb dysthesia was observed. Light touch sense was impaired over the neck, the upper trunk and the proximal part of the arms, especially on the right side. Pain sensation was markedly impaired or absent over the upper arms and the trunk, apart from a patchy area including dermatomes from D6 to D10. Thermal discrimin-

Figure Sural nerve biopsy: semithin sections (top) and myelinated fibre histograms (bottom) of the patient (left) and a normal control (right), showing myelinated fibre loss predominantly affecting small fibres (toluidine blue, ×400).
ation was similarly but more diffusely impaired; hypoaesthesia was found in the proximal extremities and in the trunk, with the exception of the left middle thoracic dermatomes; cold sensation was lost in the distal part of the legs. Proprioception and vibration were present. The ankle reflexes were diminished and abdominal reflexes absent. Walking could not be examined. She required catheterisation because of difficulty in urinating and absent bladder distension sensation; the abdomen was distended and bowel sounds were absent, with radiological evidence of paralytic ileus.

A few days later she complained briefly of painful attacks in the extremities. The laboratory tests at the onset of the disease presented elevated plasma (1/1024; 1/1024 10 days later) and CSF (1/32; 1/128 10 days later) values of anti-Ganglioside IgM, IgG antibodies. CSF protein was slightly elevated (1120 mg/l); there were three monoclonal cells/ml. Antinuclear antibodies were present (1/640) and circulating immune complexes were slightly increased (2-1 µg/ml; normal value 1-5 <1-5). Known causes of acquired dysautonomia were carefully excluded. Cerebral NMR was normal, as was the EEG, BAEPs, VEPs and SEPs (median and peronal nerves); the EMG showed partial denervation in the distal limb muscles and the nerve conduction tests showed an axonal neuropathy (table 1). The diagnosis of parasympathetic neuropathy was also confirmed by autonomic function tests carried out on the tenth day: blood pressure response to standing was 40 mm Hg (normal <30); sustained handgrip 9 mm Hg (normal >10); cold pressure test was 0 mm Hg (normal >10); deep breathing (variation in beats/minute) was 3 (normal >10); lying to standing could not be evaluated; Valsalva ratio was 1 (normal >1.5); and sympathetic response was absent (methods and normal values of the cardiovascular reflex tests according to Ewing). Five days after the onset of the neurological manifestations pregnancy was terminated. A sural nerve biopsy performed five days later revealed moderate loss of myelinated fibres (4232/mm²) especially of those of small diameter, which amounted to 51-3% (normal percentage of myelinated fibres of diameter <7 µ; 55-68%, and there was a complete absence of unmynelialled fibres (fig). Active axonal degeneration was present in the majority of teased fibres. Approximately one month from the onset of the disease, slight tear and saliva production began and the patient's sense of taste returned. Decreased muscle strength (Medical Research Council Grade 4/5 diffusely) was noted. When the arms were extended fine tremor and hand dystonia were noticed. She had paresthesia and sensory impairment extending to the lower face and scalp, and to the distal part of the arms. Ten days later the patient complained of burning nocturnal pain in the extremities which lasted for three days, and abdominal colic. Orthostatic hypotension persisted but she was asymptomatic and could walk a few millimeters.
Discussion

Acute pandysautonomia is a rare syndrome characterised by severe sympathetic and parasympathetic postganglionic impairment with relative or complete sparing of motor and sensory function. It was described as a clinical entity by Young et al. Other studies followed (table 2), but the pathological basis and the aetiology still remain unclear. Electrophysiological and morphological studies were carried out in only a few cases in the early phase of the disease and these reports differ in their conclusions. In our case, the pathological basis was an axonal degeneration, which was proven by the sural nerve biopsy. Our findings do not confirm whether the peripheral nerves are directly damaged, or the primary lesion lies in the autonomic and dorsal root ganglia, as previously reported. A viral cause for the disease has been proposed (table 2). In our case pandysautonomia and sensory neuropathy were associated with evidence of a Coxsackie B virus infection, and high and rising levels of anti-Coxsackie B virus antibodies. This infection could be the possible origin of the pandysautonomic neuropathy, perhaps by direct viral damage or by eliciting an abnormal immune response.

Acute sensory and autonomic neuropathy: possible association with coxsackie B virus infection.

Fiocchi, D Medici, A Marbini and D Mancia

J Neurol Neurosurg Psychiatry 1992 55: 613-615
doi: 10.1136/jnnp.55.7.613

Updated information and services can be found at:
http://jnnp.bmj.com/content/55/7/613

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/