Phases in the brain stem in this case, at and beyond the margin of the area involved with CPm. No multinucleated cells were seen.

AH HOLMES
The Infectious Disease Unit, Churchill Hospital, Oxford

CS MORRIS
Department of Neuropathology, Radcliffe Infirmary, Oxford

A EDWARDS
Department of Genito Urinary Medicine, Radcliffe Infirmary, Oxford

4 Tormey WP. Central pontine myelolysis and changes in serum sodium. Lancet 1990; 335:1169.

Could midbrain "resting" tremor be caused by postural maintenance at rest?

James Parkinson described resting tremor suggesting that tremor in Parkinson's disease (PD) persists even when the patient no longer has to maintain limb posture. So-called midbrain or rubral tremor characteristically includes resting, postural, and intention tremor. Gordon Holmes' noticed that midbrain resting tremor ceased when the limb was completely at rest. Holmes' observation suggests that midbrain resting tremor, contrary to resting tremor in PD, is caused by postural maintenance. We describe a patient with presumed midbrain tremor showing evidence that PD resting tremor and midbrain resting tremor may have different neurophysiological background.

At the age of 63, a 67 year old man was suddenly struck by a left-sided third nerve palsy and a right-sided hemiparesis which disappeared after a few weeks. After this period resting, postural, and intentional tremor appeared in the right arm. He developed coarse, irregular myoclonic head shaking to the right and frequent generalised shuddering tremor lasting a few seconds. The patient was unsuccessfully treated with Sine- met. With orphenadrine 50 mg four times daily, the tremor diminished, as did the shaking attacks. Four years later the patient noticed that the entire limb tremor would disappear if he pushed firmly on the upper edge of the homolateral trapezius muscle.

On physical examination the right arm showed a complex resting tremor (Webster grade 2-3) with flapping flexion-extension at the wrist and elbow, and pronation-supination of the forearm. In our patient the first finger was beating against the thumb, though the classic "pill-rolling" movement of the thumb against the first finger, was absent (According to Denny-Brown' these movements of our patient's first finger and thumb differentiate midbrain tremor from PD tremor). The tremor amplitude increased on stretching the arm, and performed the finger-nose test. With distraction, when the patient was at rest or lying on a bed the tremor sometimes disappeared. The right arm was hypokinetic (grade 1) and rigid (grade 2).

EMG showed regular 5 Hz bursts in the trapezius, supraspinatus and splenius capitis muscles, with the trapezius muscle constantly discharging 10 to 20 ms before the supraspinatus muscle. There were alternating 5 Hz bursts in the biceps and triceps muscles. CT head scan did not reveal any focal abnormalities.

The resting and action tremor were completely abolished by local intramuscular injection of 10-20 cc bupivacaineadrenaline solution into the supraspinatus and the adjacent part of the trapezius muscle. The effect on the tremor lasted for days to weeks, although it diminished after the first few days. The patient was treated 17 times with intervals of two weeks to three months. Unfortunately the 17th injection caused a troublesome pneumothorax, so that the patient refused further injections.

Although we do not have direct anatomical proof of a mesencephalic lesion in our patient, the clinical picture consisting of acute ipsilateral third nerve palsy and contralateral hemiparesis warrants a diagnosis of Benedikt's syndrome as a result of mesencephalic stroke. In these patients a so-called midbrain tremor, which is combined resting, postural and intentional tremor, may develop.

Direct evidence that postural maintenance rather than motor neurones in our patient was provided by local intramuscular anaesthetic infiltration after which both action and resting tremor disappeared. Although we cannot explain why the beneficial effect was so long lasting, the effect itself is well known. According to Rondot, postural tremors may spread from one muscle to the other muscles of the limb. Intramuscular anaesthesia of the muscles in which the rhythmic activity originated stops the tremor phenomena in all muscles of the corresponding limb. This procedure was neither effective in suppressing the resting tremor in 3 of our PD patients with classic resting tremor, rigidity and hypokinesia at the injected side, nor in PD patients elsewhere, Rondot et al' and Rondot (personal communication).

Sabra and Hallett' argued that in cases of severe tremor appearing on postural maintenance, Holmes' term "rubral tremor" should be avoided; "severe postural cerebellar tremor" is more appropriate because it is mainly the superior cerebellar peduncle which is involved. The most typical vascular form of this postural tremor is associated with a contralateral third nerve palsy. Antagonist muscles in these patients showed Parkinson-like alternating activity. Both findings are also present in our patient. Although Sabra and Hallett mention only one of their 32 patients having a tremor at rest, our case suggests that postural tremor at rest may be part of such a syndrome.

We cannot exclude the possibility, depending on the site and extent of the lesion, other patients with so-called midbrain tremor show the characteristic resting tremor of PD. Dopa responsive midbrain tremor may belong to this group. Patients with midbrain tremor will be studied carefully in an attempt to resolve these questions.

W M J H ORSTINK* C J W VAN DE VLASAKKER* J C BERGER* H M VINGERHOETS†
Department of Neurology†
Medical Psychology‡
and Clinical Neurophysiology‡
University of Nijmegen.
Nijmegen, The Netherlands.

 Correspondence to: Dr Horstink, Department of Neurology, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.

Transcutaneous phrenic nerve stimulation

Transcutaneous phrenic nerve stimulation, with measurement of the terminal latency of the nerve, is a well recognised technique for assessing phrenic integrity. The technique is used essentially that described by Newsom-Davis in 1967, which utilises the diaphragmatic compound muscle action potential (CMAP) using surface electrodes placed over the chest wall. The exact position of the electrodes has been a subject of some discussion. Newsom-Davis originally recorded from the eighth intercostal space in the anterior axillary line. In other studies the fifth and sixth spaces, also in the anterior axillary line, the eighth space and the xiphisternum, and the seventh or eighth space near the costochondral junction have been used. Most recent studies have used the seventh or eighth intercostal spaces just anterior to the costal margin.

In some papers, notably Newsom-Davis's original work, there was slight concern over the possibility of stimulating nerves other than the phrenic, especially the phrenic branch of the brachial plexus, and producing a CMAP that did not reflect diaphragmatic contraction. This was not borne out clinically and brachial plexus stimulation, while common (especially in children) was not expected to affect the CMAP seen. Other muscles which also may be stimulated, such as larysimus dorsi, lie too far away from the electrodes to affect the signal. Stimulation of the serratus anterior muscle was also suggested as a confounding contraction but anterior placement of the electrodes should avoid this as the origins of the muscle are from the lateral borders of the upper 8-10 ribs.

We are involved in a prospective study of phrenic nerve function in children having cardiac surgery, and over the period of a year we have successfully studied over 250 children before and after surgery. Chest electrodes were placed over the seventh intercostal space and over the eighth rib in the anterior axillary line. In a small number of children we are now dismissing the artefactual trace which was initially thought to be part of the diaphragmatic CMAP; we now recognise that it is clearly not. Figure 1 shows the preoperative trace of a normal five year old boy, with latency measured at 5 ms. Post-operatively his trace was that seen in figure 2. This shows an apparent latency of 2-6 ms with a normal appearance to the CMAP.
Could midbrain "resting" tremor be caused by postural maintenance at rest?

M W Horstink, C J Van de Vlasakker, H J Berger and H M Vingerhoets

J Neurol Neurosurg Psychiatry 1992 55: 632
doi: 10.1136/jnnp.55.7.632

Updated information and services can be found at:
http://jnnp.bmj.com/content/55/7/632.1.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/