SHORT REPORT

"Fou rire prodromique" heralding a brainstem stroke

G M Wali

Abstract
A patient manifested pathological laughter heralding the onset of brainstem stroke leading to a "locked-in" state. The pathological laughter did not recur. MRI revealed a bilateral ventral pontine infarct. The clinico-anatomical correlations of this rare phenomenon of fou rire prodromique are discussed.

(J Neurol Neurosurg Psychiatry 1993;56:209–210)

"Fou rire prodromique" is a neurological event characterised by the occurrence of pathological laughter at the onset of stroke. It is rarely reported and its neuroanatomical basis is unclear. The clinical and anatomical MRI correlates of the present case are discussed in the light of previous reports.

Case report
A 35 year old, previously healthy, woman developed transient left faciobrachial weakness which lasted about 15 minutes. Three days later she developed a mild throbbing headache which appeared in the evening and persisted until the next morning when she developed the neurological event. After a warm shower she suddenly began to laugh. The laughter was inappropriate to the situation and continued for nearly 15 minutes at the end of which it became a low grade giggle. This lasted for another 15 minutes and ended abruptly when she collapsed and became immobile due to gross weakness of the limbs. Her eyes remained open and she was unable to talk. Blinking was present. She remained conscious throughout and had no automatic movements or convulsions.

On admission, her heart rate was 120 beats per minute and regular. Blood pressure was 140/90 mm Hg. Respiration was 26 per minute and regular. Cardiovascular and respiratory systems were normal. She was mute and had weakness of bilateral facial, pharyngeal and masticatory muscles. Spastic tetraplegia was present with minimal spontaneous movements of the right arm and leg. The pupils were normal in size and reaction to light. Eye movements were restricted for the left lateral gaze but well preserved in other directions. Eye blinks were normal. She could hear and follow commands as expressed by her eye movements, blinks and attempts to vocalise. Blood sugar, cholesterol, urea, creatinine and electrolytes performed soon after admission were normal. CT of the brain the next day revealed a hypoluscent area in the brainstem at the level of the pons. The chest radiograph, ECG and echocardiogram were normal. Serological tests for syphilis and collagen vascular disease were negative. A lumbar puncture CSF study was also normal.

MRI performed in the fifth week revealed a bilateral, asymmetrical infarct of the basis pontis. The tegmentum was preserved. In the sagittal view (fig 1) the prong-shaped lesion involved almost the middle three-fifths of the basis pontis. The axial view (fig 2) demonstrated that the lesion predominantly involved the left half of the basis pontis. The right half was only partially involved in its anterior third. No lesions were seen at other sites. An EEG showed bilateral, diffuse, mild slowing of the background activity in the range 7–8 Hz. No epileptiform discharges were seen. An angiogram was refused.

The patient improved partially over a period of one month. She could flex her right arm and leg spontaneously. Vocalisation was restricted to groaning. Her mood remained relevant to the situation and she did not exhibit any episodes of pathological laughter or crying. She died of pneumonia after six weeks. Necropsy was not performed.

Discussion
This patient developed the "locked-in" syndrome as a result of bilateral infarction of the basis pontis, demonstrated by MRI. The shape and extent of the infarct suggest that it occurred through occlusion of the paramedian branches of the basilar artery at the level of pons. The temporal profile of the neurological symptoms suggests the possibility of a thrombotic event. As the tests for specific aetiologies, such as syphilis, tuberculosis and collagen vascular disease were negative, the possibility of atherosclerosis is considered although it is uncommon at this age.

Laughter is termed pathological when it is inappropriate and continuous. It is not associated with expected mood changes and there is an absence of voluntary control. The type, the extent and duration of the facial expressions. Spasmodic pathological laughter could occur as a release phenomenon following destructive lesions of the CNS as seen with pseudobulbar palsy, epileptic phenomenon (gelastic epilepsy)
ventricle also destroyed the mammillary bodies. The present case belongs to this rare group of strokes. The pathological laughter preceded the onset of stroke and did not recur, indicating that it was not a part of the pseudobulbar syndrome. It was also not a galactic seizure because there were no automatisms or altered sensorium. The EEG did not reveal any epileptiform discharges.

There is no clear idea about the lesions that can produce pathological laughter. Poeck and Pilleri have analysed 30 cases that were verified at necropsy. The various sites of lesion demonstrated in these cases include the internal capsule with adjacent basal ganglia, substantia nigra, cerebral peduncles, caudal hypothalamus, bilateral foci in the thalamus and bilateral lesion of the pyramidal tract along with the extrapyramidal fibres accompanying them. Recently Asfora et al, have reported an interesting case of angiographically occult pontine vascular malformation presenting solely with pathological laughing and crying. Their data suggest that pathological laughing and crying can occur without other features of pseudobulbar palsy.

The precise neuroanatomy of normal laughter is unknown. The most tenable suggestion was presented by Wilson. He proposed the presence of a centre linking the facial nucleus in the pons with that of the tenth nerve in the medulla and the phrenic nuclei subserving respiratory movements. These connections are a requisite for the faciorespiratory coordination of laughter. He also postulated an integrative centre in the medial thalamus, hypothalamus and subthalamus. In turn, this centre is considered to be under the voluntary control of the corticobulbar tracts, and involuntary control of the respiratory tracts, which extend from the orbitofrontal cortex to the bulbar nuclei. These respiratory tracts have both accelerator and decelerator functions which are needed during laughter. Poeck has speculated that there is a tonic and phasic innervation of the movements of facial expression. In the fou rire prodromique there is a loss of the tonic control of laughter and, in spasmodic pathological laughter, there is a loss of the phasic control. Based on these proposals, it is possible that the patient’s ventral pontine lesion led to the disruption of tonic innervation of the faciorespiratory centre in the lower brainstem.

"Fou rire prodromique" heralding a brainstem stroke.

G M Wali

J Neurol Neurosurg Psychiatry 1993 56: 209-210
doi: 10.1136/jnnp.56.2.209

Updated information and services can be found at:
http://jnnp.bmj.com/content/56/2/209

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/