SHORT REPORT

Transthyretin gene mutations in British and French patients with amyloid neuropathy

K Bhatia, M Reilly, D Adams, M B Davis, C H Hawkes, P K Thomas, G Said, A E Harding

Abstract

Five patients, two British and three French, with late onset amyloid neuropathy were found to have mutations of the transthyretin (TTR) gene associated with the Portuguese and German types of familial amyloid polyneuropathy. Familial amyloid polyneuropathy is rare in the United Kingdom and has not previously been defined at a molecular genetic level. None of the patients had a history of affected antecedents; the role of TTR gene analysis in diagnosing known or suspected amyloid neuropathy, regardless of family history or ethnic background, is emphasised.

(J Neurology Neurosurgery Psychiatry 1993;56:694–697)

Familial amyloid polyneuropathies are a clinically and genetically heterogeneous group of autosomal dominant disorders. The most common type was first described in Portugal, where the disease is endemic and over 500 kindreds have been reported. The clinical picture is of a predominantly sensory neuropathy, often with early autonomic dysfunction. The onset is insidious, usually between the ages of 20 and 40 years, with loss of pain and temperature sensation in the feet often associated with painful paraesthesiae. Distal muscle weakness, wasting and loss of tendon reflexes and other sensory modalities occur later. Amyloid may be deposited in other tissues including the kidneys, heart, and vitreous body, but the clinical manifestations are mostly related to the peripheral neuropathy. The condition is slowly progressive and death usually occurs about 10 years after onset.

The amyloid fibril protein deposited in the tissues of these patients is related immunologically to the transport protein transthyretin (TTR), previously known as prealbumin. In the Portuguese type a single base substitution in the TTR gene produces an amino acid substitution of methionine for valine at position 30 of the TTR protein, and creates a new recognition site for the restriction endonuclease *Nsi I* which can be detected by a TTR cDNA probe. Other foci of familial amyloid polyneuropathy with a similar clinical picture and the same TTR gene mutation have been reported from Japan, Sweden, Brazil, Italy, Greece, Majorca, Cyprus, and France.

At least 14 different point mutations of the TTR gene associated with familial amyloid polyneuropathies have been reported to date. Some clinical features are associated with specific TTR variants; although early distal loss of pain and temperature in the legs is common in all of them, the carpal tunnel syndrome, heart and vitreous involvement, late onset, and a more generalised sensory neuropathy may be prominent in some (table). Nevertheless, it is rarely possible to judge which TTR mutation is responsible for the disease in an individual case, unless the patient's ethnic background provides a clue. As in Portugal, many of these disorders have been labelled according to the origin of the families described—for example, the Maryland/German, Appalachian, and Jewish types. Importantly, some TTR variants are associated with cardiomyopathy but do not seem to affect peripheral nerve. Also, not all types of familial amyloid polyneuropathy are associated with deposition of abnormal TTR; in the Iowa (van Allen) and Finnish varieties the amyloid is derived from apolipoprotein AI1 and gelsolin respectively.

To date, none of the known TTR gene defects has been reported in patients from the United Kingdom, where familial amyloid polyneuropathy seems to be rare. Here we present two TTR related amyloid neuropathies: well characterised variants and clinical features from published work.

<table>
<thead>
<tr>
<th>TTR variant origin</th>
<th>Clinical features (prominent other sites of amyloid)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mor30 Portugal</td>
<td>SAN (vitreous)</td>
<td>2-9, 25</td>
</tr>
<tr>
<td>Ile33 Jewish</td>
<td>SAN</td>
<td>10</td>
</tr>
<tr>
<td>Pol33 Poland (USA)</td>
<td>SAN</td>
<td>11</td>
</tr>
<tr>
<td>Pro36 Greece (USA)</td>
<td>SAN (cardiac)</td>
<td>12</td>
</tr>
<tr>
<td>Gly42 Japan</td>
<td>SAN</td>
<td>13</td>
</tr>
<tr>
<td>Ala49 Italy</td>
<td>SAN (cardiac, vitreous)</td>
<td>14</td>
</tr>
<tr>
<td>Arg50 Japan</td>
<td>SAN</td>
<td>13</td>
</tr>
<tr>
<td>His58 Germany</td>
<td>SAN, CTS</td>
<td>15</td>
</tr>
<tr>
<td>Ala60 (Ireland)</td>
<td>Late onset SAN (cardiac)</td>
<td>16, 26</td>
</tr>
<tr>
<td>Leu64 (Appalachian)</td>
<td>SAN, CTS</td>
<td>17, 23</td>
</tr>
<tr>
<td>Tyr77 Germany (USA)</td>
<td>SAN, CTS (vitreous)</td>
<td>18</td>
</tr>
<tr>
<td>Ser84 Switzerland</td>
<td>SAN, CTS (vitreous)</td>
<td>19</td>
</tr>
<tr>
<td>Arg90 Italy</td>
<td>SAN (cardiac, vitreous)</td>
<td>20</td>
</tr>
<tr>
<td>Cys114 Japan</td>
<td>SAN</td>
<td></td>
</tr>
</tbody>
</table>

*Presumed origin of affected antecedents, with place of residence of patients in reported cases in brackets. SAN = sensory/autonomic neuropathy. CTS = carpal tunnel syndrome.
describe two British patients with amyloid neuropathy, neither of whom had affected relatives or a relevant ethnic background, who were found to have pathogenic TTR gene mutations. One had the met30 mutation, and the other the tyr77 mutation unfamiliar to described in only two families, one German-American and one French.23 We also report on three further French patients with the tyr77 mutation who gave no history of affected ancestors but are probably related to the kindred described by Satier et al.23

Patients, methods, and results

Methods

DNA was extracted from blood (10–20 ml) by standard procedures. Amplification of exon 2 of the TTR gene was carried out as described by Abbot and Povey.24 For exon 3, 1 μl DNA was amplified using the polymerase chain reaction in a Hybaid Intelligent heating block using oligonucleotide primers CTC-CATGCGTAACCTATCC (5' to TTR exon 3) and GCCGATGTGTTTTTGGAAATG (3' to TTR exon 3) for 30 cycles, comprising denaturing at 90°C for 10 s, annealing at 50°C for 30 s, and elongation at 70°C for 30 s. The products of the polymerase chain reaction were digested with Nai I (exon 2) and Ssp I (exon 3) according to the manufacturer’s instructions (Northumbria Biologicals, UK) before electrophoresis for 45 minutes in 4% agarose NuSieve (FMC Bioproducts, Maine, USA), staining with ethidium bromide, and inspection under ultraviolet light.

Case 1

A 69 year old man developed sequential bilateral visual loss due to vitreous opacities over a few months at the age of 63 years. A right vitrectomy was performed. At about this time he experienced distal tingling, numbness, and subsequently weakness of his legs, which later spread to his hands. He had occasional conduction velocities in his hands. Five years earlier he had had surgery for bilateral carpal tunnel syndromes with good relief of symptoms. He also complained of constipation and numbness of the penis with erectile impotence. There were no symptoms of bladder dysfunction or postural hypotension. He was of mixed Scottish and English ancestry; extensive genealogical investigation going back to the eighteenth century showed nothing to suggest similarly affected relatives. On examination he had weakness of ankle dorsiflexion and toe extension, absent tendon reflexes, and similax plantar responses. He had distal impairment of pain and temperature sensation, more than loss of light touch in his limbs, and on the anterior abdominal wall, and mild impairment of vibration and position sense in his toes. Serum immunoelectrophoresis was normal. Sensory action potentials were reduced in amplitude in the median (3 μV), ulnar (4 μV), and sural (1 μV) nerves, with mild reduction in conduction velocities, and motor nerve conduction velocities were normal or slightly reduced with small compound muscle action potentials; there was evidence of denervation in distal muscles on electromyography.

A sural nerve fascicular biopsy showed severe depletion of myelinated nerve fibres, particularly those of smaller calibre. There was evidence of both active fibre degeneration and regeneration. Small endoneurial deposits of amyloid were present. The specimen available for immunohistochemistry unfortunately contained no amyloid.

Case 2

A 60 year old man was seen in 1989 with a two year history of distal numbness and more recent stabbing pains in his feet; about six months after onset in his legs he noticed similar symptoms in his hands. Five years earlier he had had surgery for bilateral carpal tunnel syndromes with good relief of symptoms. He also complained of constipation and numbness of the penis with erectile impotence. There were no symptoms of bladder dysfunction or postural hypotension. He was of mixed Scottish and English ancestry; extensive genealogical investigation going back to the eighteenth century showed nothing to suggest similarly affected relatives. On examination he had weakness of ankle dorsiflexion and toe extension, absent tendon reflexes, and similax plantar responses. He had distal impairment of pain and temperature sensation, more than loss of light touch in his limbs, and on the anterior abdominal wall, and mild impairment of vibration and position sense in his toes. Serum immunoelectrophoresis was normal. Sensory action potentials were reduced in amplitude in the median (3 μV), ulnar (4 μV), and sural (1 μV) nerves, with mild reduction in conduction velocities, and motor nerve conduction velocities were normal or slightly reduced with small compound muscle action potentials; there was evidence of denervation in distal muscles on electromyography.

A sural nerve fascicular biopsy showed severe depletion of myelinated nerve fibres, particularly those of smaller calibre. There was evidence of both active fibre degeneration and regeneration. Small endoneurial deposits of amyloid were present. The specimen available for immunohistochemistry unfortunately contained no amyloid.

Case 3

A 64 year old man from northern France had
developed bilateral symptoms of the carpal tunnel syndrome when he was aged 54 years, with good recovery after bilateral median nerve decompression. At the age of 63 he developed pain in the small joints of his hands and feet, together with tingling and numbness in his hands and feet. At the time of investigation he had no relevant family history. His father came from Picardy and died at the age of 52 years of carcinoma of the oesophagus; his mother, from Aquitaine, died aged 63 years of uterine carcinoma. They had six and nine siblings respectively, none of whom were known to have symptoms of peripheral neuropathy. On examination in 1988 he showed finger clumping, swelling of small joints, and axillary lymphadenopathy. He had mild generalised muscle weakness and distal wasting. He had sensory loss for pain and temperature in a glove and stocking distribution, and his tendon reflexes were absent. There were no signs of autonomic dysfunction. He had atrial fibrillation; echocardiography showed a hypertrophic cardiomyopathy with a suggestion of septal amyloid deposits. Bone marrow and rectal biopsy specimens were normal, as were routine haematological and biochemical results, including immunoelectrophoresis. A sural nerve biopsy specimen showed an appreciable reduction in nerve fibre density, with many fibres undergoing axonal degeneration. There were small endoneurial deposits of amyloid. Amyloid deposits were also found on conjunctival biopsy. Immunostaining was negative for κ and λ chains, β, microglobulin, and TTR. His neuropathy progressed subsequently and he developed postural hypotension; he died suddenly at the age of 67.

Case 4
In 1991 the 62 year old sister of the patient in case 3 presented with sensory symptoms in her hands and feet and orthostatic hypotension. On examination she had reduced appreciation of pain and temperature sensation distally, with less striking loss of touch, weakness of toe extension, and areflexia. Cardiovascular responses to tilt and the Valsalva manoeuvre were impaired. Nerve biopsy showed amyloid deposits. Echocardiography showed evidence of amyloidosis (concentric hypertrophy and increased echogenicity of the septum and valves).

Case 5
A French woman of 67 was the only child of a man from Picardy who died aged 40 years from tuberculosis; her mother, from Eure et Loir, died aged 95 years. She presented with pricking feelings and loss of sensation in her feet. On examination she had loss of pain and temperature sensation in a stocking distribution and absent ankle jerks. Nerve conduction studies showed evidence of an axonal neuropathy, and the features of a subacute axonal neuropathy were seen on sural nerve biopsy. Her condition gradually deteriorated, and when examined at the age of 73 she could walk only with two sticks. She had generalised muscle weakness, most noticeable distally and in her legs, with areflexia. Sensory loss had extended up her limbs and affected the anterior part of the trunk. She was hoarse and had dysuria and constipation. Her pupils were unreactive to light. Amyloidosis was suspected clinically; re-examination of the nerve biopsy sections showed two small deposits in the endoneurium that stained positive with Congo red. Increased echogenicity of the myocardium and thickening of the interventricular septum were seen on echocardiography.

Results
Case 1 had the TTR met30 mutation, and cases 2–5 the TTR tyr77 mutation, as shown by the presence of additional restriction sites for Nsi I and Ssp I, respectively (figure).

Discussion
To our knowledge, cases 1 and 2 are the first patients to be described from the United Kingdom with familial amyloid polyneuropathy defined at a molecular genetic level. The clinical features in case 1 were similar to those reported in Swedish patients with the met30 mutation, with late onset and vitreous involvement. Patients from Portugal with the same mutation tend to present earlier with sensory and autonomic neuropathy, as described in the introduction of this paper; the reason for these differences in phenotype is unknown.

Wallace et al first described the TTR tyr77 mutation in an Illinois kindred of German extraction. The proband presented in the sixth decade of life "with symptoms of lower
We thank Drs. C.J.F. Davis and M. Malherbe for referring in cases 2 and 3. Financial support from the Brain Research Trust and the Royal College of Physicians of Ireland is gratefully acknowledged, as is the help of Dr. R.H.M. King and Miss J. Workman.
