LETTERS TO THE EDITOR

Progressive systemic sclerosis with CNS vasculitis and cyclosporin A therapy

Progressive systemic sclerosis is a multi-system disorder characterised by inflammatory, vascular and fibrotic changes of the skin and a variety of internal organs. Most reports describing neurological complications of PSS have focused on damage to the peripheral nervous system. CNS dysfunctions are rare and thought to result from uraemia, hypoxaemia, and severe hypertension. This is the first trial of cyclosporin A (CyA) in a patient with PSS vasculitis secondary to PSS.

A 67 year old woman was admitted with difficulty in walking and with speech. She had been in good health until December 1985, when she noted that her hands turned white in a cold environment. Subsequently, she developed a nonproductive cough. In February 1986 she experienced occasional dizziness. In July 1990 she began to walk with a waddle.

On admission, her blood pressure, pulse, body temperature, and respiration were normal. The skin of her face was so taut that she was unable to open her mouth fully; her lips were thin and shortened. She had telangiecetias on the chest. Auscultation of the chest disclosed fine crackles on the lower fields of both lungs. The skin of her fingers and hands was firm and thickened and tightly bound to underlying subcutaneous tissue. The skin changes spread from her hands to her chest. Calcinosis cutis was not found. Raynaud's phenomenon could be induced by cold stimuli.

She had dysarthria; left hemiparesis with slight rigidity and spasticity; and mild incoordination. Deep tendon reflexes were normal and pathological reflexes were absent. The ESR, blood count, and biochemical tests, were normal. The C-reactive protein was negative; rheumatoid factor positive; antinuclear antibody present in a 1:320 dilution; anti-Scl-70 antibody (anti-scleroderma antibody) was positive in a 1:16 dilution. Electrocardiogram showed first-degree atrioventricular block with a prolonged PR interval of 0-24 second. Pulmonary function tests revealed a slightly restrictive ventilatory defect; the ratio of FEV1/FVC was 0.86 and the ratio of FVC observed/FVC predicted was 0.73. Cold water (10°C) immersion test on the skin of the hand showed a delay in regression into the initial temperature, which was compatible with Raynaud's phenomenon. CSF was normal. Radiograph of the chest showed fine fibrotic strands in the lower portions of both lungs. Barium-meal revealed a dilated duodenum with decreased peristalsis. MRI scan of the head disclosed ischaemic lesions in the right occipital region, the right middle cerebral peduncle, and the basilar part of the pons. Digital subtraction angiogram (DSA) showed localised severe stenosis and post-stenotic dilation, a "string of beads" appearance, from the distal end of the right vertebral to the proximal portion of the basilar arteries (fig.). There was no definite stenosis in other arteries. Skin biopsy specimens showed proliferation of thickened collagen fibres in the dermis.

Based on our health findings, we diagnosed PSS, following the scleroderma criteria of the American Rheumatism Association, and we attributed the abnormal angiogram findings to vasculitis. Treatment was started with CyA 8 mg/kg/day. Two months later, urine analysis disclosed an increase in urinary β_2-microglobulin, a sign of renal damage caused by CyA. Immediately the dose was reduced to 6 mg/kg, and during the next month it was reduced by 1 mg/kg every week, to 3 mg/kg.

Though the abnormal findings of serological tests were not improved, during this period the β_2-microglobulin returned to normal. The patient's nonproductive cough subsided and Raynaud's phenomenon did not occur. The skin involvement gradually diminished, and the abnormal ECG findings and pulmonary function tests improved. PR interval, 0-20 second; FVC observed/FVC predicted ratio, 0-8. The neurological symptoms that resulted from multiple CNS infarction remained stable. Cold water immersion test showed a normal recovery to the initial temperature.

One year after the beginning of CyA treatment, the patient takes 150 mg/day (3 mg/kg/day) of CyA, her hands and fingers are still slightly thickened. Two months later, autonomic bodies, including anti-Scl-70 antibody, have normalised, except for a positive ANA in a 1:160 dilution.

The classical "string of beads" appearance on the angiogram is characteristic of vasculitis, but may be present in infection and arteriosclerosis. There have been three reports about PSS with CNS vasculitis. In all the cases the authors diagnosed PSS based on angiograms, and in Lee's report, post mortem examination disclosed mononuclear cell infiltration into the left internal carotid artery.

Recently, we and Darchers have emphasised the importance of vascular involvement in the pathogenesis of PSS, and have suggested that it was probably the initial event preceding abnormal fibrosis. Why our patient had CNS vasculitis without systemic vasculitis is unclear. We assume that there are unknown differences in antigenicity between arteries of the CNS and other organ systems.

Effective drug therapy in PSS has not been established. D-penicillamine has been reported to reduce skin thickening, but it does not change the clinical course of PSS. Corticosteroids are considered to aggravate some symptoms of PSS. Some investigators have reported that CyA was effective against PSS.1 Our first trial of CyA in PSS with CNS vasculitis appeared dramatically successful.

KAZUYUKI ISHIDA
TOMOUYUKI KAMATA
HIROSHI TSUKAGOSHI
Department of Neurology
Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo, 113, Japan.

Ocular myasthenia: diagnostic value of single fibres EMG in the orbicularis oculi muscle

When myasthenia gravis is restricted to ocular muscles it can present a difficult diagnosis. Firstly, the response to Tension iv can be negative or ambiguous; secondly, repetitive nerve stimulation and titration of serum anti-acetylcholine receptor antibodies (anti-AChR abs) often give negative results.1 Chronic progressive external ophthalmodoplegia (CPEO) must be distinguished. Single fibre electromyography has proved to be a sensitive diagnostic test in patients with myasthenia gravis.2 However, increased jitter and impulse blocking can also be found in nerve and muscle diseases3 and abnormal findings have been reported in some patients with chronic progressive external ophthalmodoplegia.4

In this study, we verified the diagnostic sensitivity of single fibre EMG of the orbicularis muscle in patients with ocular myasthenia gravis and its usefulness in the distinction from chronic progressive external ophthalmoplegia. We studied 14 patients with purely ocular myasthenia and 8 patients affected with chronic progressive external ophthalmoplegia. There were 7 male and 7 female patients with myasthenia gravis, aged 13-61, mean 41 (SD 14). We used data of duration of disease ranging from 1-40 years, mean (SD) 7 (10-1). The diagnosis of ocular myasthenia was based on history and clinical signs together with 1/4000 titre of these features: unequivocal improvement after intravenous edrophonium; presence of serum antibodies to AChR; decremental response to repetitive nerve stimulation. Thirteen patients showed fluctuating prostrations and/or diplopia, while in one case, with long-standing disease, clear fluctuations were not evident. Twelve patients improved

Figure Digital subtraction angiogram shows localised stenosis and post-stenotic dilation. There was no definite stenosis in other arteries.

References
Letters to the Editor

considerably on the Tensilon test, six had detectable anti-AChR abs, five showed decremental pattern on RNS performed on proximal muscles (deltoid and biceps brachii). In the patient without fluctuations of clinical signs, in whom the Tensilon test was negative, the diagnosis of myasthenia gravis was confirmed by the presence of serum anti-AChR abs in muscle biopsy performed in this patient as well as in another case with no detectable anti-AChR abs, showed normal findings. All patients had a follow-up period of at least 2 years and alternative diagnoses were excluded.

Eight patients had chronic progressive external ophthalmoplegia, 3 males and 5 females, aged 35–71, mean (SD) 56 (14.9) with proportion of disease ranging from 1.5–17 years mean (SD) 5.3 (5.1). All patients had clinical weakness restricted to oculi muscles and five complained of mild fluctuations of ptosis. In this group, serum anti-AChR ab titration and repetitive nerve stimulation gave negative results, while the response to the Tensilon test was negative in four cases and equivocal (minimal improvement of ptosis) in the other four. The diagnosis of progressive external ophthalmoplegia was confirmed by the presence of typical ragged red fibres on muscle biopsy in all cases. Single fibre EMG was performed in the orbicularis oculi muscle during slight voluntary contraction. A single fibre EMG electrode (Medelec SF 25) was inserted in the inferior and lateral portion of the muscle and recordings were made on a Medelec Myostro electromyograph. For each muscle tested, 20 action potential pairs were analysed and the overall mean jitter as mean consecutive difference (MCD), the percentage of potential pairs with prolongation and the percentage of potential pairs with blocking were evaluated. In agreement with other authors, we considered a jitter study pathological when either a value for mean MCD was above the 95% upper limit for age or a jitter was above the 95% upper limit for potential pairs in more than 10% of pairs. The reference values for these parameters, with age groups, were derived from literature.

Single fibre EMG studies were performed, at least 48 hours after discontinu- ing therapy, on patients with myasthenia. Single fibre EMG in the orbicularis oculi muscle were pathological in 13 of 14 patients (93%) with purely ocular myasthenia gravis. Eleven patients showed abnormal mean jitter and more than 10% potential pairs had prolonged jitter (in 8 patients blocking was recorded); two patients had mean MCD below the 95% upper limit and respectively 20% and 40% potential pairs with prolonged jitter were found.

In all patients with chronic progressive external ophthalmoplegia, single fibre EMG studies showed values within the normal limits. The mean jitter did not exceed 25 μsec. Only 2 had 5% of potential pairs with prolonged jitter and no blocking was recorded.

In patients with oculomasticatory myasthenia, the positivity rate of single fibre EMG was lower than with the Tensilon test (86%), RNS (36%) or anti-AChR abs (43%).

Serum anti-AChR abs, which are present in the majority of patients with ocular myasthenia gravis, are detectable in a much lower percentage of patients with the ocular form of the disease. Single fibre EMG has proved the most sensitive technique in detecting the neuromuscular transmission defect in ocular myasthenia gravis, especially when facial muscles are tested. The orbicularis oculi muscle shows abnormal results more often than the frontalis muscle. Unfortunately, single fibre EMG abnormalities can also be seen in primary neuropsychiatric and myopathic disorders as a result of abnormal conduction of the impulse in degenerating or reinervating nerve terminals or abnormal endplates. In CPEO patients, Kendrel and Sanders described increased jitter and blocking in facial (frontalis) and in arm muscles and a primary defect of neuromuscular transmission has been suggested in this condition. In our study, single fibre EMG performed in the orbicularis oculi muscle revealed a neuromuscular transmission defect in 93% of patients with purely ocular myasthenia gravis and so demonstrated a diagnostic capacity significantly higher than the Tensilon test, repetitive nerve stimulation or anti-AChR ab titration.

Also, in our experience, the sensitivity of single fibre EMG in ocular muscles, particularly in the orbicularis oculi, than in the extensor digitorum communis muscle.

Correspondence to: Dr. Milone, Institute of Neurology, Catholic University, Policlínico A. Gemelli, L.go Gemelli, 8, 00168 Rome, Italy

Soluble interleukin-2 receptor levels in serum of patients with demyelinating polyneuropathy associated with monon- glnal gangliopathy

Monoclonal ganglipoathies, especially monoclonal gangliopathy of uncertain sign- ificance (MGUS) with IgM M-components, are associated with demyelinating polyneuropathy (PN). In approximately 80% of these patients, the IgM compo- nent reacts with myelin associated glycoprotein (MAG) or other subcomponents of myelin and a pathogenetic role of the M-component has been proposed. However, other mechanisms, besides the M-compo- nent acting as antibody, may be operating. In vitro studies have shown that monoclonal antibodies against MAG in a patient with monoclonal gangliopathy were subject to T-cell regulation, but the role of a T-cell mediated immune response has not been further investigated.

Interleukin-2 (IL-2), which is synthesised by antigen or mitogen activated T lympho- cytes, plays an essential role in triggering T-lymphocyte proliferation, T-cell differen- tiation, and surface expression of IL-2 receptors (IL-2R) on T-cells. It also induces maturation and proliferation of B-lympho- cytes. However, the role of IL-2 in the pathogenesis of monoclonal gammopathy has not been fully investigated.

We analysed sIL-2R levels in serum as a measure of T-cell activation in 19 patients (13 men and 6 women, mean age 66) with monoclonal gammopathy (15 with MGUS and 4 with Waldenström's macroglobulinaemia; 17 of whom had levels of IL-2R above normal) and in 15 healthy individuals (9 men and 6 women, age 47–80 years, mean age 66) without monoclonal gammopathy served as controls. Antibodies against MAG and PNM have been demonstrated in several autoimmune disease states, for example, multiple sclerosis, and the Guillain-Barré syndrome.

We analysed sIL-2R levels in serum as a measure of T-cell activation in 19 patients (13 men and 6 women, mean age 66) with monoclonal gammopathy (15 with MGUS and 4 with Waldenström's macroglobulinaemia; 17 of whom had levels of IL-2R above normal) and in 15 healthy individuals (9 men and 6 women, age 47–80 years, mean age 66) without monoclonal gammopathy served as controls. Antibodies against MAG and PNM have been demonstrated in several autoimmune disease states, for example, multiple sclerosis, and the Guillain-Barré syndrome.

We analysed sIL-2R levels in serum as a measure of T-cell activation in 19 patients (13 men and 6 women, mean age 66) with monoclonal gammopathy (15 with MGUS and 4 with Waldenström's macroglobulinaemia; 17 of whom had levels of IL-2R above normal) and in 15 healthy individuals (9 men and 6 women, age 47–80 years, mean age 66) without monoclonal gammopathy served as controls. Antibodies against MAG and PNM have been demonstrated in several autoimmune disease states, for example, multiple sclerosis, and the Guillain-Barré syndrome.

We analysed sIL-2R levels in serum as a measure of T-cell activation in 19 patients (13 men and 6 women, mean age 66) with monoclonal gammopathy (15 with MGUS and 4 with Waldenström's macroglobulinaemia; 17 of whom had levels of IL-2R above normal) and in 15 healthy individuals (9 men and 6 women, age 47–80 years, mean age 66) without monoclonal gammopathy served as controls. Antibodies against MAG and PNM have been demonstrated in several autoimmune disease states, for example, multiple sclerosis, and the Guillain-Barré syndrome.

We analysed sIL-2R levels in serum as a measure of T-cell activation in 19 patients (13 men and 6 women, mean age 66) with monoclonal gammopathy (15 with MGUS and 4 with Waldenström's macroglobulinaemia; 17 of whom had levels of IL-2R above normal) and in 15 healthy individuals (9 men and 6 women, age 47–80 years, mean age 66) without monoclonal gammopathy served as controls. Antibodies against MAG and PNM have been demonstrated in several autoimmune disease states, for example, multiple sclerosis, and the Guillain-Barré syndrome.
Ocular myasthenia: diagnostic value of single fibre EMG in the orbicularis oculi muscle.

M Milone, M L Monaco, A Evoli, S Servidei and P Tonali

J Neurol Neurosurg Psychiatry 1993 56: 720-721
doi: 10.1136/jnnp.56.6.720-a

Updated information and services can be found at:
http://jnnp.bmj.com/content/56/6/720.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/