Mechanisms of late stroke after myocardial infarct: the Lausanne Stroke Registry

Rosario Martin, Julien Bogousslavsky, for the Lausanne Stroke Registry Group

Abstract
To assess the potential mechanisms and patterns of late stroke after myocardial infarct, 94 consecutive patients with first ever stroke at least three months after myocardial infarction (anterior 67%; inferior 12%; widespread 12%) were studied. Systematic investigations were those of the Lausanne Stroke Registry and included brain CT, extra/transcranial Doppler ultrasound, 12-lead ECG, three-lead continuous ECG monitoring for at least 24 hours after admission, and transthoracic two dimensional echocardiography. All patients had an akinetic left ventricular segment, but only 11 (12%) had a visible thrombus. Eleven (12%) of the patients had long standing hypertension and a small deep infarct so that lacunar infarction due to small artery disease was as likely to be the cause as cardioembolic stroke. There was severe internal carotid artery disease (≥50% stenosis or occlusion) ipsilateral to the infarct in 20 (21%) of the patients with anterior circulation stroke. A potential cardiac source of embolism other than akinetic left ventricular segment was found in 14 (15%) patients, atrial fibrillation (12%) being the commonest. Only 13 (14%) patients had no potential cause for stroke other than akinetic left ventricular segment. The study group was compared with 466 patients with first stroke but no akinetic left ventricular segment on two dimensional echocardiography, and with 94 patients with first stroke and a potential cardiac source of embolism but no akinetic left ventricular segment and no history of ischaemic heart disease. Logistic regression analysis showed that older age, male sex, hypercholesterolaemia, and vascular claudication were significantly and independently associated with stroke after myocardial infarction. The findings suggest that late stroke after myocardial infarction may often be a direct consequence of the sequelae of myocardial infarction, but other potential cardiac causes of stroke, large artery disease, and lacunar stroke must also be considered.

Stroke may follow acute myocardial infarction in 3% of the cases,1 and left ventricular aneurysm may be a cause of delayed stroke after myocardial infarction.12 However, the most common cardiac abnormality after myocardial infarction is not aneurysm but localised wall akinesia without dilatation. As the role of this abnormality in delayed stroke after myocardial infarction is unclear, the aim of the present work was to study a group of consecutive patients with first stroke at least three months after myocardial infarction to assess the potential mechanism and patterns of stroke in these patients. We assessed coexisting potential causes of stroke and compared the findings with those in patients with stroke but without akinetic left ventricular segment and in patients with another potential cardiac source of embolism.

Methods
Patients with stroke at least three months after myocardial infarction were selected from all patients (n = 1802) consecutively included in the Lausanne Stroke Registry, a hospital-based computerised prospective registry of patients with first ever stroke (cerebral infarction or haemorrhage, neurological deficit lasting more than 24 hours). The characteristics of this registry have been presented in detail elsewhere.5

All patients were assessed by at least one staff neurologist within six days of stroke. Systematic investigations included brain CT (up to four examinations, the first within seven days of stroke) with and without contrast (except when the patient was known to be allergic to contrast material), Doppler ultrasound with frequency spectral analysis and B-mode echotomography (common, external, and internal carotid arteries, vertebral arteries at the retromastoid level, subclavian arteries, ophthalmic arteries), transcranial Doppler, 12-lead ECC, three-lead continuous ECC monitoring for at least 24 hours after admission, two dimensional echocardiography, and standard blood and urine tests. Cerebral angiography was performed in selected patients.

Akinetic left ventricular segment was diagnosed on the basis of two dimensional echocardiography. The criteria for akinetic left ventricular segment were those of the American Society of Echocardiography.10 Other potential cardiac sources of embolism included intracardiac thrombus or tumour, rheumatic mitral stenosis, prosthetic aortic
and mitral valve, endocarditis, atrial fibrillation, sick sinus syndrome, and global cardiac hypokinesia or dyskinesia. Risk factors and concomitants (hypertension, diabetes mellitus, current or former oral contraceptive use, cigarette smoking, hypercholesterolaemia, venous haematoctrit, history of migraine, ischaemic heart disease, arrhythmia or vascular claudication, and family history of stroke or heart disease), characteristics of the stroke onset, clinical findings, previous transient ischaemic attacks (TIAs), functional disability, type and cause of the stroke were defined and analysed following the guidelines of the registry.

We studied separately the subgroup of patients with no alternative cause of stroke other than myocardial infarction sequelae [without coexisting large artery disease (as detected by Doppler ultrasound and B-mode echotomography) and without evidence for small artery disease (no lacunar infarct, no history of hypertension)], in whom the likely cause of stroke was cardioembolism. The patients with late stroke after myocardial infarction were compared (1) with the patients with first ever stroke who were admitted during the same period but who had no akinetic left ventricular segment on two dimensional echocardiography [466 patients, 268 (57.9%) men and 198 (42.1%) women, with a mean age of 54 (SD 16) years (range, 16 to 95 years)]; (2) with the patients with first ever stroke who were admitted during the same period and who had another potential cardiac source of embolism but no akinetic left ventricular segment and no history of ischaemic heart disease [94 patients, 47 (50%) men and 47 (50%) women, with a mean age of 48 (14) years (range 17 to 77 years)].

We performed statistical analysis of 2 × 2 contingency tables using the χ² test (on Fisher’s two tailed exact test when the expected number in any cell was less than 5). For multiple comparisons, we used the procedure proposed by Hochberg for multiple significance testing. A logistic regression model was fitted using GLIM software to evaluate the presence of risk factors and concomitants as coincident factors in patients with stroke and akinetic left ventricular segment.

Results

There were 94 patients with late stroke after myocardial infarction, all with akinetic left ventricular segment on two dimensional echocardiography [84 (89-4%) men and 10 (10-6%) women, with a mean age of 64-5 (10-2) years (range 34 to 39 years)]. Forty two (44-7%) patients had hypertension, 17 (18%) had diabetes mellitus, 36 (38-3%) smoked cigarettes regularly, and 21 (22-3%) had hypercholesterolaemia. Venous haematoctrit on admission was higher than 0-45 in 25 (26-5%) patients, 12 (12-7%) patients had a history of vascular claudication, and 12 (12-7%) had a family history of stroke or heart disease. When compared with the group of patients without myocardial infarction, the patients with old myocardial infarction were significantly older, they were more frequently men, they more often had hypertension, diabetes mellitus, hypercholesterolaemia, or a history of vascular claudication (table). The figure shows the odds ratio with 95% confidence intervals adjusted for age and sex. When compared with patients with another potential cardiac source of embolism, the patients with old myocardial infarction were significantly older, they were more frequently men, and more often had hypertension and diabetes mellitus (table).

After stepwise multiple logistic regression, only age, sex, history of vascular claudication, and hypercholesterolaemia were linked to the presence of old myocardial infarction in stroke patients, according to:

\[
P(\text{akinetic left ventricular segment}) = \frac{e^f}{1 + e^f}
\]

where: \(f = -4-43 + 0-05x_1 -1-75x_2 + 0-81x_3 + 0-77x_4\)

where: \(x_1 = \text{age}, \ x_2 = \text{sex}, \ x_3 = \text{history of vascular claudication}, \ x_4 = \text{hypercholesterolaemia}\). P(old myocardial infarction) = probability of old myocardial infarction in patients with stroke with standard errors of: 0-97 for intercept, 0-01 for age, 0-35 for sex, 0-42 for history of vascular claudication, and 0-31 for hypercholesterolaemia.

Among the 94 patients with old myocardial infarction, only 13 (14%) had no large artery
disease appropriate to the symptoms and no
evidence of small artery disease (no lacunar
infarct, no hypertension). However, when we
compared this subgroup with the remaining
patients with old myocardial infarction, there
was no significant difference for risk factors
and concomitants.

HEART DISEASE
Heart auscultation was abnormal in 33
(35-2%) patients with akinetic left ventricular
segment; 91 (96-8%) patients with old
myocardial infarction had ECG findings of
ischaemic heart disease. The topography of
akinetic left ventricular segment corresponded
with the topography of myocardial infarction
on ECG [anterior wall myocardial infarction
63 (67%), inferior wall myocardial infarction
11 (12%), and widespread myocardial infarction
11 (12%)]. Fourteen (14-9%) patients had a history of cardiac dysrhythmias
[atrial fibrillation: 11 (12%); sick sinus syn-
drome: one (1%); supraventricular tachycar-
dia: two (2%)]. On the admission ECG 13
(13-7%) patients had a cardiac dysrhythmia
[atrial fibrillation: nine (10%); ventricular extrasystole: three (3%); bradycardia: one
(1%)], 12 (12-8%) patients had a conduction
defect, and five (5-3%) patients had signs of
left ventricular hypertrophy. There was no
significant difference between the three
groups for the frequency of cardiac dysrhythm-
ia and conduction defects. Eleven (11-7%)
patients with akinetic left ventricular segment
also had a left ventricular thrombus. No patient
with akinetic left ventricular segment had
coeexisting rheumatic mitral stenosis,
prothetic aortic or mitral valve, endocarditis,
or intracardiac tumour.

ARTERIAL DISEASE
Thirteen (13-8%) patients with akinetic left
ventricular segment had a neck bruit (ipsilat-
eral to the infarct in seven patients, contralat-
eral in one patient, and bilateral in five patients). Twenty (21-3%) patients with old
myocardial infarction had \(\geq 50\% \) stenosis or
occlusion of the internal carotid artery (ICA)
ipsilateral to the cerebral infarct; nine (9-6%)
patients had \(\geq 50\% \) stenosis or occlusion of
the contralateral ICA. Patients with old
myocardial infarction more often had a neck
bruit and a significant stenosis or occlusion of
precerebral arteries than patients without old
myocardial infarction \(\geq 50\% \) stenosis or
occlusion of the ipsilateral ICA: 23 (10%),
\(p = 0.001 \); \(\geq 50\% \) stenosis or occlusion of
the contralateral ICA: eight (2%), \(p = 0.000 \)
and those with another potential cardiac
disease source of embolism \(\geq 50\% \) stenosis or
occlusion of the ipsilateral ICA: six (6%),
\(p = 0.000 \); \(\geq 50\% \) stenosis or occlusion of
the contralateral ICA: one (1%), \(p = 0.022 \).
Eleven (11-70%) patients with old myocardial
infarction had coexisting small artery disease.
This proportion was similar to that found in
the patients without old myocardial infarction
and in those with another potential cardiac
disease source of embolism. There was no significant
difference between the three groups for the
frequency of visible intracranial occlusions
suggesting embolism in the patients who had
angiography within 48 hours of stroke.

PREVIOUS TIA AND STROKE ONSET
Twenty four (25-5%) patients with old
myocardial infarction reported TIA's before
the stroke. There was no significant differ-
ence when compared with the patients without
old myocardial infarction [104 (22%)],
but compared with patients with another
potential cardiac source of embolism, patients
with old myocardial infarction less frequently
had TIA's ipsilateral to the cerebral infarct [13
(14%) vs 22 (23%), \(p = 0.041 \)]. There was
no significant difference between the three
groups for the number and duration of the
TIA's or for the TIA stroke interval. In the
old myocardial infarction patient group, stroke
was immediately complete in 79 (84%) patients,
progressed smoothly in six (6-4%) patients
(\(< 24 \) hours in four patients \(< 24 \)
\(< 36 \) hours in two patients), and fluctuated in
nine (9-6%) patients (\(< 24 \) hours in one patient,
\(< 24 \) \(< 30 \) hours in eight patients). Stroke
was immediately complete in patients with
than without old myocardial infarction
(84% vs 74%, \(p = 0.010 \)). Stroke
was as often immediately complete in patients
with old myocardial infarction as in patients
with another potential cardiac source of embolism. Two (2-1%) patients with old
myocardial infarction had a syncope (sudden
transient loss of consciousness) as the first
cerebral symptom.

CEREBRAL INFARCT
The stroke was seen on CT in 85 (87-2%)
patients with old myocardial infarction, in
393 (84-3%) patients without old myocardial
infarction, and in 84 (89-36%) patients with
another potential cardiac source of embolism.
Ninety three (98-9%) patients with old
myocardial infarction had a cerebral infarction
and one (1-1%) patient apparently had a
primary cerebral haemorrhage. This propor-
tion was similar to that found in patients
without old myocardial infarction [cerebral
infarct: \(450 (96-6\%) \); primary cerebral haem-
orrhage: \(16 (3-4\%) \)]. Patients with old
myocardial infarction had a lower proportion
of cerebral haemorrhage than patients with
another potential cardiac source of embolism
[cerebral infarct 84 (89-36%); cerebral
haemorrhage 10 (10-63%). Fifty one (54%)
patients with old myocardial infarction had a
left cerebral infarction, 34 (36%) patients had
a right cerebral infarction, and nine (10%)
had a bilateral cerebral infarction. In 21
(22%) with old myocardial infarction, the
cerebral infarction was verteobasilar and in
64 (68%) patients it was in the carotid terri-
tory [inferior division of the middle cerebral
artery (MCA):19 (20%); deep ICA:16
(17%); superior division MCA:20 (21%);
superficial + deep MCA:seven (7%); water-
shed infarct: two (25)]. There was no signifi-
cant difference between patients with old
myocardial infarction, patients without old
myocardial infarction, and patients with
another potential cardiac source of embolism for the topography of the cerebral infarcts.

NEUROLOGICAL DEFICIT

Patients with old myocardial infarction more often had headache at onset than patients without old myocardial infarction (11 (11·7%) vs 109 (23·4%, p = 0·049)), and as often as patients with another potential cardiac source of embolism. Eleven (11·7%) patients with old myocardial infarction had decreased consciousness (somnolence or coma) on admission similar to the patients without old myocardial infarction or the patients with another potential cardiac source of embolism. Fifty three (56%) patients with old myocardial infarction had speech disturbances (dysarthria or aphasia). The clinical findings of patients with old myocardial infarction were: motor only: 30 (32%); sensory only: four (4%); visual field only: 10 (11%); motor + sensory: 19 (20%); motor + visual field: one (1%); motor + sensory + visual field: 11 (12%); sensory + visual field: three (3%); other deficit: 16 (17%). There was no significant difference between the three groups for the clinical findings.

SHORT TERM EVOLUTION

Short term evolution was similar in patients with old myocardial infarction, those without old myocardial infarction, and those with another potential cardiac source of embolism. In the old myocardial infarction group, three (3-2%) patients died and 56 (59-6%) were able to return to all or most previous activities.

Discussion

The frequency and potential role of the sequelae of myocardial infarction in patients with stroke have not been extensively studied and when mentioned it is usually without special analysis. The frequency of old myocardial infarction in our series of first stroke patients (17%) was between the 5-2% (three of 76 patients studied by two dimensional echocardiography) reported by Caplan et al. and the 24-5% (14 of 57 patients studied by two dimensional echocardiography) reported by Franco et al. Our study is the first in which systematic CT, Doppler ultrasound, and echocardiography were performed in patients with stroke after myocardial infarction, providing an evaluation of the coexistence of other potential causes of stroke than akinetic left ventricular segment in these patients. When compared with patients with stroke but no old myocardial infarction, or with patients with another potential cardiac source of embolism, the main characteristics of the patients with old myocardial infarction were older age, male gender, history of vascular claudication, and hypercholesterolaemia. Most of our patients had an anterior wall myocardial infarction and akinetic left ventricular segment, which is more often associated with left ventricular thrombi than inferior wall myocardial infarction. Follow up studies have suggested that patients with myocardial infarction had a significant increase in risk of stroke during the first two to three months after myocardial infarction, but the subsequent risk was poorly assessed. Clinical trials with a long term follow up suggested that the risk of ischaemic stroke during the first three years after myocardial infarction is about 3%. Jones, et al. found that 10 of 34 patients with myocardial infarction at least three months before stroke had no possible cause of stroke other than an akinetic left ventricular segment. Fourteen per cent of our patients had no potential cause for stroke other than akinetic left ventricular segment, and we assume that at least in that subgroup of patients, akinetic left ventricular segment was a likely source of cerebral embolism, even without visible thrombi.

Many of the patients with ischaemic stroke may have a coexisting potential cardiac source of embolism and arterial disease. A previous study from this centre showed that approximately one quarter of the patients with cerebral hemispheric infarcts and a potential cardiac source of embolism also had appropriate cardioi disease. In our series, more than a fifth of the patients with old myocardial infarction had ≥ 50% stenosis or occlusion of the ICA ipsilateral to the stroke, this proportion being higher than that found in patients without old myocardial infarction and in patients with another potential cardiac source of embolism. Also, 12% of the patients with old myocardial infarction had long standing hypertension and a small infarct limited to the territory of deep perforators, an association which has been considered to be very suggestive of small artery disease. This proportion was not different from that found in patients without old myocardial infarction and in patients with another potential cardiac source of embolism, and is also similar to the 13% reported in patients with nonvalvular atrial fibrillation. Conversely, 17% of patients with infarct in the territory of deep perforators may have a potential cardiac source of embolism. Coexisting potential cardiac sources of embolism may also confuse the exact role of each potential source. These facts make it difficult to determine the exact mechanism of stroke in many patients, in whom small artery disease, artery to artery embolism and cardioembolism may be equally likely.

Although it seems impossible to establish a predictive clinical profile of cardioembolic stroke, there are some features which may suggest an embolic mechanism. Actually, in 84% of our patients with old myocardial infarction, stroke was immediately complete, a fact which has been associated with the presence of a potential cardiac source of embolism. Also, only 14% of the patients with old myocardial infarction reported prior TIA's ipsilateral to the cerebral infarction, which have usually been linked to an atherothrombotic mechanism, though they may also occur in cardioembolic stroke.
Finally, cerebral infarct involved the superficial MCA territory in nearly half of our patients with old myocardial infarction, a location which suggests an embolic mechanism, but which may not allow distinction of an arterial from a cardiac source of embolism, though the proportion of cardioembolic is higher in posterior MCA territory infarcts and lower in anterior MCA territory infarcts.

Though many patients with old myocardial infarction have coexisting small and large artery disease, there is a subgroup of patients in whom we were unable to find another potential cause of stroke. These data suggest that myocardial infarction and its direct cardiac consequences may be a cause of stroke not only acutely but also thereafter.

R Martin is on leave from the University of Alicante and supported by the grant from the Council of Europe no. 90062.

Mechanism of late stroke after myocardial infarct: the Lausanne Stroke Registry.

R Martin and J Bogousslavsky

J Neural Neurosurg Psychiatry 1993 56: 760-764
doi: 10.1136/jnnp.56.7.760

Updated information and services can be found at:
http://jnnp.bmj.com/content/56/7/760

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/