A 20 year old woman had a four year history of MG. The disease manifested itself with horizontal diplopia, ptosis and fluctuating hyposensitivity to chemoreceptor stimuli (Burkitt's Id). Diagnosis of MG was supported by high levels of anticholinesterase receptor antibodies of 22-8 pmol/ml (normal range 0-5 pmol/l), and decremental response on repetitive stimulation with improved after Edrophonium chloride (Tension). The patient had thymectomy in 1988 due to thymic hyperplasia and since then was treated with anticholinesterase medication and IV Ig. Events of progressive weakness in the last months, she was admitted to hospital in October 1992 for IV Ig treatment.

On admission her general examination was normal. Neurological examination revealed mild ptosis, proximal muscle weakness without bulbar signs or respiratory difficulties. ESR, anti nuclear factor, rheumatoid factor, immunoglobulin levels, thyroid function, and chest x ray were normal.

The patient was treated with IV Ig (Gimimum, Miles Inc, USA) 4.5%–5.5% solution in 9–11% saline without preservative 84 g/day (0.43 g/kg/day). On the third day of treatment her temperature rose to 37.8°C and she complained of severe headache with photophobia, nausea and she vomited once. She had nuchal rigidity, papillary reaction with normal CSF. Lumbar puncture revealed clear CSF, with a pressure of 200 mm H2O. Cell count was 80 µl, 50% lymphocytes and 50% neutrophils. CSF glucose was 0.97 g/l and glucose 2.5 mM (blood glucose 3.9 mM). Gram stain, bacterial and viral cultures, cryptococcal antigen, and acid fast staining were negative. IV Ig infusion was discontinued and recovery was registered after 72 hours without antibiotics or any specific treatment. Lumbar puncture was repeated after 10 days and showed 10 µl lymphocytes, normal protein (0.19 g/l) and glucose (3.1 mM).

As IV Ig therapy was considered an important mode of therapy in this young patient, it was necessary to establish whether the meningitis was associated with IV Ig or coincidental. We therefore obtained informed consent and started a challenge with IV Ig infusion increasing the dose from 0.1 g/kg/day to 0.4 g/kg/day during five days. Her temperature rose to 38.6°C and she developed severe headache with photophobia. Nuchal rigidity with positive Brudzinsky and Kernig’s signs were again noted. IV Ig treatment was discontinued and after 48 hours the fever, headache and signs of meningeal irritation disappeared. The patient refused a third CSF examination. Side effects of IV Ig treatment are usually mild, consisting mainly of allergic reactions in IgA deficient patients, hepatitis, and transient vasomotor symptoms with chills, nausea, flushing, chest tightness and wheezing. Transient headache, confusion, altered consciousness associated with fever had been described in several patients.5

Drug induced meningitis has been reported in association with infliximab, tacrolimus, nonsteroidal anti-inflammatory agents, azathioprine, isoniazide, OKT3 and others.7 Most reports were in patients with underlying connective tissue diseases such as systemic lupus erythematosus, but not in MG patients.

The mechanism of drug induced meningitis is presumed to be an acute hypersensitivity reaction limited to the leptomeninges without systemic anaphylaxis. Our case adds to the previous four cases of aseptic meningitis associated with IV Ig, it is the first described in an MG patient and proved with challenge. As the use of IV Ig in the treatment of neurological disorders will increase in the future, the phenomenon of associated aseptic meningitis should be anticipated.

Ze'ev Meiner
Tamar Ben-Hur
Yaron River
Avraham Reiches
Department of Neurology,
Hadassah University Hospital,
Jerusalem, Israel


Paraneoplastic opsoclonus-myoclonus in Hodgkin’s disease

Opsoclonus is rapid, irregular, chaotic and conjugate eye movements that occur in all directions. It may be part of a syndrome with myoclonus of the trunk and limbs, and may also be associated with cerebellar dysfunction.

A 22 year old female presented with a three month history of shortness of breath, left-sided pleuritic chest pain, weight loss, pruritus and night sweats. On examination there was a lymphocytosis with left upper quadrant, hepatosplenomegaly and a left-sided pleural effusion. A biopsied lymph node showed lymphocyte depleted Hodgkin’s disease (BNLI Grade II). CT scan of the chest and abdomen showed a large mediastinal mass, left-sided pleural effusion and marked hepatosplenomegaly, and she was staged IV B Hodgkin’s disease. Treatment consisted of alternating courses of LOPP (chlorambucil, vincristine, procarba- zine, prednisone) and EVAP (etopo- side, vinblastine, adriamycin, prednisolone). After 8 courses of chemotherapy she continued to have generalised itching, persistent mediastinal effusion and elevated erythrocyte sedimentation rate. Bilateral posterior iliac marrow trephines were disease-free, and it was decided to treat her with high dose chemotherapy (BCNU, etopside, cytarabine, melphanal) and autologous bone marrow transplant (ABMT), 18 months after presentation. During the subsequent paraneoplastic phase she required support with antibiotics (piperacillin, gentamicin, cefazidine, van- comycin), platelets and parenteral nutrition.

Seven weeks after BEAM chemotherapy she developed tremors, headaches and an unsteady gait. On examination she showed opsoclonus, and myoclonic movements of the head and limbs. There were no cerebellar signs. Blood glucose, electrolytes, urea, creatinine, bilirubin, haemoglobin, white cell count and immunoglobulins were normal. There was no increase of CSF pressure, and normal CSF total protein, glucose, cell counts and immunoglobulins. CT and MRI scans of the head were normal. A CT scan of the chest showed persistent mediastinal lymphadenopathy. She received 1 g methylprednisolone intravenously daily for 3 days and localised radiotherapy to the mediastinal mass.

Her neurological symptoms improved gradually over the next 3–4 weeks and she remains well and free from any neurological symptoms approximately 12 months after BEAM chemotherapy and ABMT.

The term opsoclonus was first used by Orzechowski in 1927 to describe rapid irregular conjugate eye movements in several patients with non-epidemic encephalitis.8 Opsoclonus can be seen as the bedside by the presence of spontaneous, large-amplitude conjugate saccades occurring in all directions of gaze without a sac- cadic interval. The combination of opsoclonus and myoclonus is a feature of the head and upper limbs without evidence of cerebellar dysfunction found in our patient are typical of previously reported cases of the OM syndrome.3 These patients differ from those with paraneoplastic cerebellar degeneration by more rapid onset, predominance of truncal over appendicular ataxia, presence of myoclonus, a tendency for remission, and preservation of cerebellar Purkinje’s cell.5

Opsoclonus occurs in association with a wide variety of aetiological factors, including viral and bacterial infections of the CNS, intracranial tumour (for example, glioblastoma), thalamic haemorrhage, hydrocephalus, multiple sclerosis, intoxication with lithium and amitryptilane, and in neoplastic hypertensive cerebellar disease.9

Most published cases of OM have been described in children as a para-neoplastic manifestation of neuroblastoma.6 OM as a ‘remote effect’ of cancer in adults is much less common.1,2 It has been described as a series of single case reports over many years and the tumours have included carcinoma of the uterus, bladder, breast, lung and thymus. Our report is the first of OM in a patient with Hodgkin’s disease.

The site of the lesions causing opsoclonus is unknown. It may occur as a result of an autoimmune or inflammatory control of horizontal and vertical saccadic burst-neurons by "pause cells" in the pontine paramedian reticular formation (PPRF). The most likely site of the lesion is the pontine tegmentum of the midbrain.1 In our case, CT and MRI scans did not reveal any abnormality in this or any other region.

The pathogenesis of opsoclonus, with or without an associated neoplastic lesion, is unknown. There has been the occasional report linking viral infection of the CNS to OM.9 This is unlikely in our case as there was no clinical evidence of viral infection, and no examination for HIV serology. Gentamicin administration during the paraneoplastic phase was a possibility since streptomycin, a similar aminoglycoside, has

Letters to the Editor

Downloaded from http://jnnp.bmj.com/ on June 15, 2017 - Published by group.bmj.com
been implicated in the past, but symptoms appeared approximately four weeks after the last dose of gentamicin. It is possible that one or more of the previously administered cytoxins may have been responsible but this has not been reported before, and the last course of treatment was eight weeks before the onset of her neurological symptoms. It is possible that we have developed OM as a direct manifestation of Hodgkin's disease, but at the time of development of OM the extent of her disease had considerably reduced following high dose chemotherapy. Furthermore, before the onset of neurological symptoms she had had clinical and radiological evidence of regression of her disease. Normal CT and MRI scans of her brain excludes a diagnosis of cerebral Hodgkin's disease. A metabolic abnormality resulting from destruction of Hodgkin's disease tissue is also unlikely, although it has been previously postulated that production of neurotoxic amines and/or peptides might be responsible. This report, however, failed to show any correlation between the presence or severity of OM and the routinely available serum profiles of catecholamine of catecholamine metabolites. The discovery of antineuronal antibodies in patients with other paraneoplastic syndromes has led to the suggestion that these diseases may have an autoimmune aetiology. Support for an autoimmune basis to paraneoplastic OM has come from reports of a specific antineuronal autoantibody (anti-Ri) in the serum of patients with opsoclonus and breast carcinoma. The presence of the Ri antigen in tumor tissue of these patients suggests that it is the body's immune response to a tumor antigen that elicits the antibody response. There was no antineuronal serological data to support such a response in our patient, it is possible that breakdown of lymphomatous tissue resulting from effective chemotherapy led to the production of antineuronal antibodies and the subsequent development of OM. Treatment for opsoclonus from whatever cause remains uncertain. While some authors recommend ACTH or steroids, 9 this is by no means proven beneficial. At very least, it is imperative to treat the underlying condition.

Correspondence to: Dr Davies-Jones


Very late onset X-linked recessive bulbar neuronalopathy: mild clinical features and a mild increase in the size of tandem CAG repeat in androgen receptor gene

X-linked recessive bulbar neuronalopathy (X-BSNP) is an adult-onset hereditary motor neuronopathy characterised by bulbar symptoms, slow progression, proximal dominant muscular atrophy, and endocrinological abnormalities. 1,4 Generally, the age at onset of X-BSNP ranges from the third to fifth decade, 1,3 and activities of daily living of most patients with this disease significantly decline within fifteen years of onset. 1 Recently, patients with X-BSNP were found to have an abnormally elongated tandem CAG repeat in the first exon encoding the androgen receptor (AR) gene. 12 The increased number of CAG repeats in AR gene is, however, considerably variable among patients. We report a very late onset and very mild case, and the abnormal elongation in his AR gene was also mild.

An 84 year old Japanese man with no family history of any related disease, noted mild difficulty in climbing stairs when he was in his mid seventies. In 1991, at the age of 83, painful muscular cramp in the calves and difficulty in walking was more apparent, although he could ride a bicycle and work in the field. He was referred to our hospital in January 1992. A neurological examination showed diffuse muscular weakness and remarkable atrophy in his four extremities as well as in the truncal and facial muscles. The tongue was mildly atrophied, but could be protruded. Deep tendon reflexes were generally absent and there were no pathological reflexes. Fasciculation was remarkable in his face, tongue, neck, anterior chest, arm and leg muscles, and was more prominent in mild voluntary contractions. There was neither apparent sensory disturbance, cerebellar ataxia, nor gynaecomastia. The plasma creatinine kinase level was 250 U/L (normal <110). Glucose tolerance was normal. There was no hyperlipidaemia nor liver dysfunction. The endocrinological studies showed that the steady-state level of plasma testosterone was normal but plasma oestradiol and oestrogen diol were mildly elevated. The suppression test conducted by oral administration of fluoxymesterone for six days showed a normal suppression of testosterone, luteinising hormone (LH) and follicle-stimulating hormone (FSH). Needle EMG studies showed generalised high amplitude NMU potentials with reduced NMU interference in the muscles examined. A nerve conduction study conducted showed normal motor conduction velocities in the median and Tibial nerves, but no sensory action potential in the sural nerve. Nerve biopsy revealed moderate reduction of large myelinated fibre density, and a muscle biopsy of the vastus lateralis showed scattered grouped atrophy, clusters of picnotic nuclear clumps, and hypertrophic fibres which often contained internal nuclei.

The number of tandem CAG repeats in the first exon of his AR gene was determined on genomic DNA obtained from his peripheral blood leukocytes, using polymerase chain reaction and cycle sequencing techniques. The number of repeats was 40, which was the shortest in our series of patients with X-BSNP (45 cases with a range from 40 to 55; the normal range being from 17 to 24 in our series). 3

The extremely late onset of illness and well preserved function were quite unusual for X-BSNP, although diffuse muscular wasting in the limb muscles, contraction fasciculation and mild tongue atrophy of this patient suggested motor neuron disease. Moreover, absence of familial inheritance, and lack of gynaecomastia, glucose intolerance, hyperlipidaemia and liver dysfunction were incompatible with this disease. However, detection of AR gene mutations with an abnormally increased size of a polymorphic tandem CAG repeat 8 clearly confirmed a diagnosis of X-BSNP. Detection of AR gene mutation is essential not only for the pre-onset diagnosis or carrier detection of X-BSNP 4 but for the clinical diagnosis of atypical patients as seen in the present case.

In a majority of patients with X-BSNP, plasma testosterone, LH and FSH are poorly suppressed after oral administration of fluoxymesterone (Morishama et al., unpublished data). Thus androgen suppression is being present in normal controls. Although the precise mechanism of the fluoxymesterone suppression on these gonadal and gonadotropin hormones is not clear, it may reflect some aspect of androgen target organ sensitivity. The normal suppression pattern of plasma testosterone, LH and FSH in this patient could also be explained by the association of tandem CAG repeat in AR gene.

Correspondence to: Dr Sobue, Division of Neurology, the Fourth Department of Internal Medicine, Aichi Medical University, Nagakute-cho, AICHI. 480-11 Japan.
Paraneoplastic opsoclonus-myoclonus in Hodgkin's disease.

C L Kay, G A Davies-Jones, R Singal and D A Winfield

J Neural Neurosurg Psychiatry 1993 56: 831-832
doi: 10.1136/jnnp.56.7.831

Updated information and services can be found at:
http://jnnp.bmj.com/content/56/7/831.citation

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/